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ABSTRACT 
 

In the past decades, a great number of mathematical models have been developed to describe the 
rheological behaviour of metals and alloys in hot forming conditions. Many different approaches 
have been used for determining the constitutive equation, i. e. the complex and non-linear 
relationship between flow stress and various forming process factors. In this paper some relatively 
simple mathematical models for predicting the flow stress of alloyed steel during the hot forming 
process were investigated. In order to model the constitutive response of the material, the flow 
stress was determined as a function of main factors, such as strain, strain rate and temperature. 
After analyzing the results of calculation, the constitutive low was selected that represents the 
best-fit flow curve model. The absolute percentage errors and correlation coefficient indicate that 
the proposed flow curve could predict the flow stress in real forming conditions with good 
correlation and generalization. Also, this flow curve can easily be utilized in engineering 
calculations and numerical simulations.    
Key words: flow curves, hot forming, design of experiment, alloyed steel 
 
 
1. INTRODUCTION 
 
The knowledge of material behaviour in hot forming condition is of great importance to engineers-
designers of metal forming processes. Material behaviour in forming processes depends on its 
rheological properties, deformation process scheme, tribological and other conditions of forming 
process. The development and improvement of metal forming processes are largely based on the 
knowledge of the behaviour of metals and alloys in complex forming conditions. It is also a 
fundamental prerequisite for a successful modeling and optimization of metal forming processes 
and a deeper study of the nature of plastic deformation. 
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During hot forming processes metals and alloys suffer many physical and structural changes, the 
most important of which are [1]: (a) strain/strain rate hardening; (b) grain growth; (c) phase 
transformation; (d) static/dynamic recovery and recrystallization; (e) deformation texture and 
anisotropy; (f) internal failure and damages, etc. Many mechanical features and properties of the 
workpiece material may be changed due to the abovementioned phenomena as material responses 
undergoing the plastic deformation: (a) resistance of plastic deformation; (b) yield stress, strength, 
hardness, and impact toughness; (c) geometric defects (wrinkles, folds, burrs, underfill, ruptures) 
and fracture; (d) resistance to corrosion; (e) surface roughness; (f) formability and machinability, 
etc. Some of these changes take place in the rest of the production procedure and can be seen on 
the final products.  
Mathematical models that describe the rheological behaviour of working material can be presented 
in a simplified manner using flow curves. Flow curves represent the elementary and most 
important source of information on the possible material behaviour in forming processes. Flow 
curves establish the relationship between flow stress and the so-called thermo-mechanical forming 
process factors.  
Currently, flow curves utilized to represent the rheological behaviour of working material in hot 
conditions do not take into account mechanical properties and microstructure before the 
processing, as well as strain path and variability of strain rate during the forming process. Real 
forming processes are, as a rule, sequential, unproportional, and unmonotonic. The effect of these 
phenomena is currently being studied intensively. 
Mathematical models that describe the rheological behaviour of working material belong to the 
following three types [1]: (a) empirical-analytical models; (b) physically-based models; (c) 
empirical non-analytical models.  
The empirical-analytical models are used more than the other types, because they make it easy to 
identify the constitutive material coefficients and it is also easy to implement them in FEM 
analysis. The other mathematical models require specific scientific and computational knowledge, 
large experiment, complex analysis, and time-consuming procedures for the calculation 
constitutive material coefficients. The main disadvantage of the first type of mathematical models 
is that they require a priori an assumption on the kind of constitutive law.  
For the purposes of engineering calculation, it is convenient to use graphs, while it is necessary to 
display flow curves in the analytical form for the purposes of numerical simulations of forming 
processes [2], [3]. 
Mathematical models can be expressed in different formulae. Generally, the predictive capability 
and usefulness of a mathematical model can be assessed on the basis of the accuracy, consistency, 
transferability, and versatility of its structure [1], [4]. On the other hand, the availability of reliable 
experimental data is often a decisive factor whether one or another model should be used. 
This paper is not intended to provide a detailed and systematic review of flow curve models that 
are known and can be found in the literature. In comprehensive papers [1], [8], various 
methodologies for the prediction of the flow stress in hot forming processes are presented. In the 
last several years, this topic has been intensively studied. Numerous papers relate to the 
modifications of well-known flow curves for different types of materials [5], [6], [7], [8]. 
The principal objective of the present paper is rather to choose a simple and sufficiently accurate 
mathematical description of the flow curve, which can be easily used in engineering calculations 
and numerical simulations. If numerical errors are neglected, the accuracy and correctness of 
numerical analysis and simulation depend, to a great extent, on the flow curve model. 
For the abovementioned reasons, the response of materials to changeable hot forming conditions is 
very complex and specific. A generalized equation that describes the material behaviour during a 
hot forming process can be written in the implicit form: 
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( ) 0t,T,,,F e =ϕϕσ &  (1) 
 
where −σe is the flow stress (equivalent normal stress) , −ϕ is the strain, −ϕ,& are the strain rate, 
−T is the workpiece temperature and −t is the time. 

The determination of flow curves is usually based on uniaxial upsetting, uniaxial tension or torsion 
test. Each of these simple tests has severe shortcomings and cannot simulate the real forming 
processes in a proper way. Therefore, a general flow curve model may be expressed in the 
following explicit form: 
 
 

)T,,(fe ϕϕ=σ &  (2) 
 
Some important flow curve models of empirical-analytical type are given below [1], [9], [10], 
[11], [12]:   
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where −ϕ0& is the reference strain rate, −m0 T,T are the reference temperature and melting 
temperature of workpiece material, respectively, −C is the strain/strain rate sensitivity constant, 

−q,m,n are strain hardening exponent, strain rate hardening exponent, and thermal softening 
exponent, respectively, −A is the yield stress at a reference strain and temperature, −B is the strain 
hardening modulus, −α,D  are constants, −Q is the activation energy, −R is the universal gas 
constant. 
In the present study, four types of flow curves (3a-3d) are explored in detail. These equations do 
not include all physical phenomena present in forming processes, such as strain hardening and 
softening, strain history, as well as recovery and recrystallization with microstructural evolution. A 
complete coverage of all of these phenomena with a single flow curve model is an extremely 
difficult theoretical and practical problem. On the other hand, these flow curve models are simple 
and can be easily analyzed by the regression method.  
This paper consists of two main parts. The first one deals with basic postulates and advantages of 
the design of experiment. In the second part, the selected mathematical models for describing the 
flow curves in hot forming processes are presented, explored, discussed, and compared with each 
other. 
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2. DESIGN OF EXPERIMENT 
 
2.1 Overview 
 
The design of experiment (DoE) addresses the preparation, physical realization of the experiment, 
processing and analysis of the experimental data according to the previously determined plan, 
which enables the variations of factors simultaneously on various levels, in each following trial. In 
that sense, the DoE represents a qualitatively new approach to the theoretical-experimental 
analysis and optimization of complex processes/ systems, with universal application and range of 
advantages in comparison to the concept and practice of the one-factor-at-a-time method [13], 
[14], [15], [16]. 
In the DoE there are various methods developed for solving different and complex research tasks 
as: (a) mathematical modelling of phenomena, complex processes and systems in space and time, 
(b) study of internal mechanisms of various phenomena, (c) optimization and optimal control of 
process/systems. 
Each of the abovementioned tasks can be solved on its own, regardless of others. However, in 
many cases all of them are treated as an integral research task. 
The basic characteristics and advantages of the DoE (especially becoming evident in complex 
research objects, with a large number of factors) are as follows [13], [14], [16]: (a) minimum 
number of needed trials, (b) maximum amount of information from the given number of trials, (c) 
successively conducting experiment in stages (step by step), from simpler to more complex 
designs, (d) simple statistical (regression and dispersion) analysis of experimental data, (e) 
possibility of qualitative and quantitative assessment of effects of each factor (perhaps, their  
interaction) on the target function, due to variation of factors simultaneously, (f) easy optimization 
of a process/system which is the subject of research, on the basis of obtained empirical 
(regression) model of the target function, that encompasses the entire experimental space, (g) 
minimum time and material losses (expenses) for experiment realization, (h) eliminating the 
subjective influence of the researcher, etc.  
The outline of the recommended procedure in the DoE, as a statistical approach in designing and 
analyzing an experiment, include [13], [17]: (a) recognition and statement of the problem, (b) 
choice of factors, levels, and range, (c) selection of the response variable, (d) choice of 
experimental design, (e) performing the experiment, (f) statistical analysis of the data, (g) 
conclusions and recommendations. 
The mathematical model represents a formal and analytical expression of physical, geometrical 
and other characteristics of a real process/system. The selection of the mathematical model, which 
is used to establish a connection between factors (inputs) and target function (output), depends on 
the goal of the research, complexity of the phenomenon being researched, and the selected 
experimental design. Quantity and quality of information on the subject of research also influence 
the selection of mathematical model, as well as the knowledge of experimental techniques by the 
experimenter. Therefore, the selection of mathematical model, which is conducted in the initial 
phase of experimental design, represents its most significant segment, regardless of the ultimate 
goal of the undertaken research. 
The quality and accuracy of a mathematical model, that is, regression equation, is defined by the 
complexity of the selected function. Theory and practice have shown that in most cases the best 
choice is a mathematical model in the form of polynomials (linear, quasi-linear, square, etc.). More 
complex mathematical models ensure higher accuracy in the prediction of researched 
process/system behaviour in the selected hyper-space. However, such models also imply a more 
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complex experimental procedure, and more complex and time-consuming analysis and 
interpretation of experimental results, as well as greater time losses, material expenses, etc.  
On the other hand, the selection of the simplest-linear-mathematical model does not enable the 
analysis of the effects of factor interactions. However, various examples undoubtedly show that 
the effects of factor interactions on the target function can be more significant than the effects of 
single main factors. 
It should also be emphasized that it is the case of lower-order factor interactions, since the higher-
order factor interactions can be neglected. Namely, interactions of many factors, as a rule, do not 
influence the accuracy of the selected mathematical model. 
Various experiments and practical knowledge point to the fact that the mathematical models usable 
for the analysis and optimization of complex processes/systems are those in the form of multiple 
power, exponential, or some other function instead of polynomials. Such mathematical models are 
easily transformed into linear functions (first order polynomials). As it is known, in the DoE the 
procedure of statistical data processing (regression and dispersion analysis) is entirely and 
unambiguously defined for such mathematical models.  
The choice of appropriate criterion for building the mathematical model is not often obvious [18], 
[19]. It is understood that there is enough reliable information about the research object so that an 
adequate form of the mathematical model can be chosen with sufficient certainty. 
 
 
2. 2. Mathematical model in the form of  multiple power function 
 
Numerous experiments and practical knowledge have shown that a successful modeling of the 
most diverse technological processes/systems can be made using a multiple power equation in the 
following form [20], [21], [22], [23]: 
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where iX is the natural factors (natural coordinates), C  and ip are constants to be determined, 
k is the number of factors. 
By logarithming, the target function (4) is formally reduced to the linear form (5a) or (5b): 
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Multiple linear regression equation (5b) is represented in coded coordinates. The connection 
between natural and coded coordinates is established through the following transformation 
equations [17], [21], [23]: 
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For the purposes of dispersion analysis it is necessary to repeat trials at certain points in the 
experimental hyper-space. The systems of trial repetition are as follows: 
1. Repetition for 0n times only in the central point of the experimental design ( 0x i = ); 
2. Uniform repetition for n  times in each vertex of an experimental hyper-cube ( 1x i ±= ); 
3. Non-uniform repetition for un  times in certain points of an experimental hyper-cube, or only in 
one point. 
The repetition according to the third option is applied when the trials for a specific combination of 
process factors are very expensive and/or time consuming (if not impossible in manufacturing 
facilities). 
It should be emphasized that for such a mathematical model the determination of basic levels of 
factors is conducted by applying the following relations: 
 

minimaxi
2
0i XXX ⋅=  (7) 

 
One should keep in mind that the mathematical processing of the experimental data is performed 
in the same way as the application of the mathematical model in the polynomial form.  
After determining the coefficients of linear regression (5) in a widely known manner, the unknown 
constants of the target function (4) are calculated using the following formulae [17]: 
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2.3. Mathematical model in the form of multiple exponential function 
 
For an initial form of the mathematical model (target function) the multi exponential function can 
be chosen [17]: 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅⋅=⋅= ∑

=

⋅+⋅⋅⋅+⋅+⋅+⋅
k

1i
ii

)XpXpXpXp(
c )XpexpCeCF kk332211  (10) 

 
By analogous procedure for this function the following equations are obtained: 
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2. 4. Mathematical model in the form of  multiple power-exponential function 
 
2.4.1. Variant I 
 
 
 
 

In order to analyze certain complex processes and systems, it is necessary to choose the function in 
the following form, as an initial mathematical model [17]: 
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For this function the following equations are valid: 
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2.4.2. Variant II 
 
In some cases, the following mathematical model can be adequate: 
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For this function the following equations are valid: 
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3. EXPERIMENT 
 
The experimentation was carried out on the torsional plastometer, in a single deformation step, at 
selected constant temperatures and constant strain rates. Alloyed steel 42CrMo4 (DIN/EN 
designation) was selected for exploration. 
Three factors (input values, independent variables) were chosen for modelling the flow curves: 
shear strain ( γ ), shear strain rate ( γ&  ) and temperature ( T ). Flow stress ( eσ ) was chosen for the 
target function (output value, dependent variable).  
For the purposes of this research, a data subset of eight trials was extracted from a large 
experiment (Table 1) [24], and was used for conducting the regression analysis. Other trials were 
used for the verification of the selected mathematical models. The selected data subset (1, 6, 31, 
36, 73, 78, 103, 108) formed the vertices of the experimental cube and, in this way, the entire 
experimental space was covered. Therefore, a full two-level factorial design 23 was formed [13], 
[14], with eight factor combinations (Table 2). 
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       Table 1. Experimental data set for flow stress in various forming conditions 

eσ  (N/mm2) 
42CrMo4 (Č.4732) T (°C) 

)s( 1−γ&  )(−γ   800  900 1000 1100 1200 1250  

0.374 
 (1) 

202.44 
 (2) 

157.95 
(3) 

86.47 
(4) 

54.76 
(5) 

38.82 
(6) 

34.18 

0.752 
(7) 

204.86 
(8) 

163.02 
(9) 

88.69 
(10) 

57.28 
(11) 

41.41 
(12) 

35.26 

1.128 
(13) 

198.43 
(14) 

153.30 
(15) 

83.11 
(16) 

53.36 
(17) 

38.03 
(18) 

32.91 

1.504 
(19) 

187.34 
(20) 

143.08 
(21) 

79.07 
(22) 

51.39 
(23) 

36.85 
(24) 

31.94 

1.880 
(25) 

175.60 
(26) 

133.92 
(27) 

76.16 
(28) 

50.33 
(29) 

35.98 
(30) 

31.28 

 
 
 
 
 

1.26 

2.256 
(31) 

165.56 
(32) 

126.92 
(33) 

73.71 
(34) 

49.35 
(35) 

35.10 
(36) 

30.91 

0.374 
(37) 

243.17 
(38) 

164.60 
(39) 

102.98 
(40) 

73.60 
(41) 

48.25 
(42) 

42.61 

0.752 
(43) 

253.71 
(44) 

175.35 
(45) 

110.68 
(46) 

81.26 
(47) 

54.31 
(48) 

46.11 

1.128 
(49) 

249.20 
(50) 

170.84 
(51) 

105.53 
(52) 

78.84 
(53) 

51.53 
(54) 

44.41 

1.504 
(55) 

240.93 
(56) 

163.75 
(57) 

100.16 
(58) 

74.62 
(59) 

48.41 
(60) 

42.73 

1.880 
(61) 

232.63 
(62) 

156.71 
(63) 

95.13 
(64) 

71.03 
(65) 

45.30 
(66) 

41.30 

 
 
 
 
 

5.03 

2.256 
(67) 

226.31 
(68) 

144.49 
(69) 

89.85 
(70) 

67.94 
(71) 

43.42 
(72) 

39.82 

0.374 
(73) 

263.58 
(74) 

181.18 
(75) 

111.48 
(76) 

81.62 
(77) 

51.17 
(78) 

46.43 

0.752 
(79) 

273.65 
(80) 

199.86 
(81) 

120.06 
(82) 

87.96 
(83) 

57.50 
(84) 

49.86 

1.128 
(85) 

274.24 
(86) 

200.07 
(87) 

119.91 
(88) 

90.38 
(89) 

56.83 
(90) 

52.35 

1.504 
(91) 

268.15 
(92) 

189.20 
(93) 

112.30 
(94) 

83.13 
(95) 

53.25 
(96) 

49.30 

1.880 
(97) 

262.36 
(98) 

179.41 
(99) 

106.00 
(100) 

78.43 
(101) 

51.43 
(102) 

47.45 

 
 
 
 
 

7.55 

2.256 
(103) 

253.60 
(104) 

167.26 
(105) 

101.75 
(106) 

75.34 
(107) 

49.46 
(108) 

45.69 
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Table 2. Plan-matrix for non-linear mathematical model (multiple power function) 

Natural 
factors 

γ=1X  γ= &2X  TX3 =  

High level 2.256 7.55 1250 
Middle level  0.921 3.08 1000 

Low level 0.376 1.26 800 

 
Response 

      qmn TCKy ⋅γ⋅γ⋅== &  

Measurement Calculation          Coded 
factors 

  Trials 
1x  2x  3x  

y  ynl  ŷ  

1 +1 +1 +1 45.69 3.82188 44.0137 
2 - 1 +1 +1 46.43 3.83795 48.1153 
3 +1 - 1 +1 30.91 3.43108 31.1153 
4 - 1 - 1 +1 34.18 3.53164 34.0115 
5 +1 +1 - 1 253.60 5.53576 247.4974 
6 - 1 +1 - 1 263.58 5.57436 270.5346 
7 +1 - 1 - 1 165.56 5.10933 174.9500 
8 - 1 - 1 - 1 202.44 5.31044 191.2535 

 
 
4. DETERMINING THE CONSTITUTIVE MATERIAL COEFFICIENTS 
 
4.1. Mathematical model in the form of multiple power function 
 
The determination of the parameters of a mathematical model, i.e. the unknown coefficients of 
regression equation, in DoE for a full/fractionated two-level factorial design is well-known and 
fully established [13], [14]. In this case, on the basis of the experimental data set in Tab. 2, the 
following is obtained: 
 
 

46447.0b;04294.0b;04454.0b;02143.4b 3210 −==−==  (28) 
 

On the basis of  formulae (8) and (9) the following constants are calculated: 
 
 

10
321 103.2979C;86935.3p;19373.0p;04972.0p ⋅=−==−=  (29) 

 
By using the transformation equation (6), the non-linear multiple regression equation, as a power 
function, obtains  the following form: 
 
 

86935.319373.004972.010
e T103.2979 −− ⋅γ⋅γ⋅⋅=σ &  (30a) 

 
Notice: For the purposes of using equations from Chapter 2.2, the following substitution of 
variables was introduced: qp;mp;np;TX;X;X;F 321321ec →→→→γ→γ→σ→ & . 

Since relations ϕ=γ 3 and ϕ=γ && 3 are valid, Eq. (30a) may be transformed in the form: 
 

86935.319373.004972.010
e T106.3224 −− ⋅ϕ⋅ϕ⋅⋅=σ &  (30b) 
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The first-order mathematical model can be expanded by introducing interactions of the main 
design factors. However, the non-linear mathematical models in the form of complex power 
functions with interactions do not guarantee higher accuracy than the same models without 
interactions [17], [23]. On the other hand, such mathematical models make intricate the analysis 
and interpretation of modeling results. The application of such mathematical models can be 
justified only in specific cases.   
 
 
4.2. Other mathematical models 
 
Based on the previously described procedure, the following regression equations can be derived: 
a) multiple exponential function, 
b)  
 

)T00384.005514.004738.0(
e e6.3922 ⋅−γ⋅+γ⋅−⋅=σ &   (31a) 

 

)T00384.009551.008206.0(
e e6.3922 ⋅−ϕ⋅+ϕ⋅−⋅=σ &  (31b) 

 
 

c) multiple power-exponential function (Variant I), 
d)  

 
 

T00384.019373.004972.0
e e2.3762 ⋅−− ⋅γ⋅γ⋅=σ &  (32a) 

 

T00384.019373.004972.0
e e9.4071 ⋅−− ⋅ϕ⋅ϕ⋅=σ &  (32b) 

 
 

e) multiple power-exponential function (Variant II), 
f)  

 

)T273(/627119373.004972.0
e e5045.0 +− ⋅γ⋅γ⋅=σ &  (33a) 

 

)T273(/627119373.004972.0
e e5460.0 +− ⋅ϕ⋅ϕ⋅=σ &   (33b) 

 

 
 

5. RESULTS AND DISSCUSION 
 
All of the abovementioned models indicate that flow stress decreases with increasing temperature 
and strain, and decreasing strain rate. On the basis of the regression coefficient values it can be 
concluded that the forming temperature has the most pronounced impact on the flow stress, while 
the degree of influence of strain and strain rate is almost identical. That is an expected response of 
steel in hot forming processes [25], [26], [27]. In this case, it is easy to prove that factor 
interactions have negligible influence on the flow stress. 
The current study concerns a single replicated experimental design (sometimes called unreplicated 
factorial), because it has only one trial at each factor combination. Replication reflects both 
sources of variability between trials and (potentially) within trials and provides an estimate of 
’’pure error’’. Therefore, with only one replicate, there is no possibility of carrying out dispersion 
analysis in a full mathematical model [13], [14], [28]. For that reason, the evaluation of the 
adequacy of the mathematical model cannot be performed directly.  
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When a single replicated experiment is conducted, in the presence of great response variability, 
there is a risk of fitting the mathematical model to noise, which could consequently result in 
misleading conclusions. That was not the case in this study. 
Here, the verification of the given mathematical models (regression equations) can be done in an 
indirect way using the remaining experimental results in Tab. 1. 
For estimating the adequacy of all regression equations, three statistical parameters were 
employed, correlation coefficient ( R ), mean absolute percentage error (Δ ), and maximal absolute 
percentage error ( maxΔ ). The following relations were used for the calculation of errors: 
 

n
;(%)100

y
yy

exp

expcal ∑Δ
=Δ

−
=Δ  (34) 

 
where n  is the number of trials in the experiment. 
The results of calculation are presented in Table3.  
 

 
                                      Table 3. Comparison of the flow curve models 

Statistical parameters Eq. (30) Eq. (31) Eq. (32) Eq. (33) 
(%)maxΔ  18.83 13.88 18.19 24.19 

(%)Δ  5.82  5.63  5.71 7.44 

R  0.994 0.995 0.995 0.991 
 
 
On the basis of the data from Table 3, one can conclude that the prediction errors are relative small 
for all generated multiple regression equations. Based on Fig. 1 (which relates to the entire 
experiment), it can be concluded that all mathematical models ensure high levels of correlation, 
which are very similar, although not identical. The perfect prediction implies that all points should 
lie on a straight line passing through the origin and inclined at 450. From Fig. 1 one can observe 
that there is a relatively small deviation of the line of regression (which represents the best linear 
approximation of the data) from the ideal line. Taking three criteria ( R,,max ΔΔ ) into 
consideration, it is obvious that Eq. (31) represents the best-fit flow curve model. 
Differences between the measured and predicted flow stresses can be a consequence of theoretical 
assumptions, experimental errors, variations of forming process factors, strain history, geometric 
deviations of samples, failures in material and variability of its mechanical properties, 
metallurgical background, and other phenomena that occur in material during deformation. It is not 
easy to quantify separately these sources of inaccuracy.  
This study confirms that by selecting the adequate type of experimental design and mathematical 
model it is possible to reduce significantly the number of necessary trials. 
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Fig. 1. - Correlation between measured and predicted flow stress for whole data set: 

a) Eq. (30) ;   b) Eq. (31) ;   c) Eq (32) ;   d) Eq. (33)  
 
 
6. CONCLUSION 
 
In this paper, some of flow curve models were explored and discussed. It was found that a flow 
curve for alloyed steel, in hot forming condition, could be adequately approximated using a 
multiple exponential function.  
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The results of the performed analysis show that all basic forming process factors (temperature, 
strain, strain rate) are significant. Forming temperature is the dominant factor affecting the flow 
stress, followed by strain and strain rate.  
The predicted flow stress values of 42CrMo4 steel are in good agreement with experimental 
results, especially when both forming temperature and strain are high. These forming conditions 
are typical for most of real forming processes. Proposed constitutive equation can be used to 
design hot forming processes and numerical simulation for this high-strength alloyed steel. 
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REZIME 
 

U poslednjih nekoliko decenija razvijen je veliki broj matematičkih modela za opisivanje 
reološkog ponašanja metala i legura u uslovima toplog deformisanja. Korišćeni su mnogi različiti 
pristupi za određivanje konstitutivne jednačine, tj. jedne složene nelinearne relacije između 
napona tečenja i različitih faktora procesa deformisanja. U ovom radu su istraživani neki 
relativno jednostavni matematički modeli za predikciju napona tečenja legiranog čelika tokom 
procesa toplog deformisanja. Da bi se modelovao konstitutivni odziv materijala, napon tečenja je 
određen kao funkcija glavnih faktora, kao što su stepen deformacije, brzina deformacije i 
temperatura. Nakon analize rezultata proračuna izabran je konstitutivni zakon, koji reprezentuje 
najbolji model aproksimacije krive tečenja. Apsolutne procentualne greške i koeficijent korelacije 
ukazuju da predložena kriva tečenja može predviđati napon tečenja u realnim uslovima 
deformisanja sa dobrom korelacijom i generalizacijom. Takođe, ova kriva tečenja se može lako 
koristiti u inženjerskim proračunima i numeričkim simulacijama. 
Ključne reči: krive tečenja, toplo deformisanje, planiranje eksperimenta, legirani čelik 
 
 

 
 
 
 
 

 


