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System for Sustainable Manufacturing Process 
Optimization 

1. Introduction

The global manufacturing sector is a corner-
stone of economic output, yet it is characterized by 

substantial energy consumption, accounting for ap-
proximately 40% of industrial energy use in thermal 
processes alone [1]. This significant energy demand 
presents a dual challenge: it constitutes a major op-
erational expenditure for enterprises and contributes 
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heavily to global greenhouse gas emissions [2], [3]. In 
an era of increasing energy cost volatility and pressing 
environmental mandates, enhancing Thermal Ener-
gy Efficiency (TEE) is not merely an operational goal 
but a strategic imperative for achieving sustainable 
and economically competitive manufacturing [4]. 
The pursuit of energy efficiency aligns with national 
and international sustainability frameworks, such as 
Saudi Arabia's Vision 2030, which emphasizes in-
dustrial diversification, resource optimization, and 
the development of sustainable production capaci-
ties in industrial hubs like Jubail and Yanbu [5], [6]. 
Consequently, the development and deployment of 
advanced methodologies for comprehensive energy 
management are critical for the next stage of indus-
trial evolution, often termed Industry 5.0, which pri-
oritizes sustainability and resilience [7].

Historically, thermal management in manufac-
turing has been approached through incremental 
improvements and siloed control strategies [8], [9]. 
These methods often focus on the optimization of 
individual components, such as improving the effi-
ciency of a single heat exchanger or insulating a spe-
cific process, without a holistic view of system-wide 
energy flows [10]. While beneficial, this component-
level approach fails to capture the significant efficien-
cy gains achievable through the dynamic integration 
of interconnected thermal systems [11]. Key strate-
gies have included Waste Heat Recovery (WHR), 
where heat from exhaust gases or process streams is 
captured and reused, and the integration of renew-
able energy sources [12], [13]. However, the variable 
and intermittent nature of both waste heat produc-
tion and renewable energy generation presents a 
complex control challenge that conventional systems 
struggle to manage optimally [14]. The advent of In-
dustry 4.0 has introduced digital technologies that 
offer a paradigm shift in industrial process manage-
ment [15]. Among these, Digital Twin (DT) technol-
ogy has emerged as a particularly promising enabler 
for advanced energy optimization [16]. A DT is a 
dynamic, high-fidelity virtual model of a physical as-
set or system that is continuously updated with real-
time data from its physical counterpart [17]-[19]. By 
integrating Internet of Things (IoT) sensors, phys-
ics-based models, and Machine Learning (ML) al-
gorithms, a DT can simulate, predict, and optimize 
the performance of the physical system in real-time 
[20]-[22]. Recent literature highlights the potential of 
DTs to enhance energy efficiency by providing a ho-
listic view of factory operations, enabling predictive 
maintenance, and optimizing resource consumption 
[23], [24].

Beyond foundational DT expositions, several 
recent surveys and systematic reviews (2023–2025) 
sharpen both the promise and the open challenges 
of energy-oriented DTs. Aghazadeh Ardebili et al. 
[25] synthesized digital twins of smart energy systems, 
emphasizing interoperability, computational burden, 
and real-time coordination across heterogeneous as-
sets. Al Zami et al. [17] provided an industry-wide 
survey that highlights data fusion, runtime fidelity, 
and lifecycle management as key bottlenecks for scal-
able deployments. Complementing these field-level 
perspectives, Yu et al. [16] classified energy DT ap-
proaches for industrial energy management and de-
tail challenge areas that persist in practice. Together 
with manufacturing-focused discussions of DTs for 
renewable utilization and efficiency [24] and the 
largely diagnostic orientation of predictive-mainte-
nance deployments [23], this body of work converges 
on a critical gap: rigorously validated, plant-scale DTs 
that co-optimize process heat, waste-heat recovery, 
thermal storage, and on-site renewables under multi-
objective criteria and uncertainty—precisely the scope 
addressed in this study.

A review of current methodologies reveals a clear 
progression in thermal management strategies yet 
also exposes persistent limitations. Table 1 summa-
rizes recent manufacturing energy-management ap-
proaches—their methodologies, primary focus, and 
limitations—to contextualize this study and identify 
the gaps addressed.

Despite the advancements highlighted, a signifi-
cant gap persists in the literature and in industrial 
practice [31]. While many studies propose concep-
tual frameworks or focus on optimizing isolated as-
pects of energy consumption, there is a lack of re-
search demonstrating a comprehensive, integrated 
DT system for real-time thermal energy management 
across multiple, interconnected manufacturing pro-
cesses [25]. Previous approaches have treated WHR, 
renewable energy integration, and process-specific 
thermal management as separate challenges. This 
fragmented view prevents the exploitation of syner-
gies between these systems. For instance, waste heat 
from one process could be stored and used to sup-
plement a solar thermal system during periods of low 
solar irradiance, but this requires integrated sensing, 
prediction, and control beyond non-holistic systems 
[32]. This study’s novelty is threefold: (i) a validated, 
plant-scale DT that co-optimizes process heat, multi-
source waste-heat recovery, thermal storage, and on-
site renewables in real-time via a hybrid physics–ML 
framework with NSGA-II knee-point recommenda-
tions; (ii) uncertainty-aware control that propagates 
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calibrated prediction intervals into scenario-averaged 
objectives and chance-style feasibility, while adaptive-
ly updating exchanger and solar-collector efficiency 
from GBRT; and (iii) cross-sector generalizability 
demonstrated by an 18-month deployment across 
four heterogeneous facilities.

This study addresses the identified gap by de-
veloping and implementing a comprehensive DT-
enabled thermal energy management system. The 
rationale for selecting a DT approach is its unique 
ability to create a holistic, real-time, and predictive 
virtual representation of the entire thermal network 
of a manufacturing plant [33]. This allows for the 
application of multi-objective optimization algo-
rithms that consider the system as a whole, balanc-
ing competing objectives such as energy efficiency, 
cost, and carbon footprint in a way that is impossible 
with traditional control strategies [34]. Beyond DT-
specific sources, multi-objective optimization is well 
established across engineering: in production sched-
uling, dual-resource flexible job-shop formulations 
routinely balance competing targets via evolutionary 
search [27]; in power systems, optimal-power-flow 
studies synthesize cost, security, and environmental 
criteria under nonconvex constraints [14]; and many-
objective hybrids address high-dimensional trade-offs 
characteristic of complex operations [34]. This study 
adopts that mature MOO perspective—explicitly co-
ordinating energy, cost, and emissions—while embed-
ding it in a DT that enforces physics-layer feasibility 
in real time. The use of a MATLAB Simulink en-
vironment coupled with Gradient Boosting Regres-
sion Trees (GBRT) provides a robust platform for 
integrating high-fidelity physical models with power-

ful, data-driven predictive analytics. The primary aim 
of this research is to design, deploy, and validate a 
scalable DT framework for the holistic optimization 
of thermal energy in sustainable manufacturing. The 
specific objectives are:

•	 To develop a high-fidelity DT that integrates 
real-time data from diverse thermal assets, in-
cluding heat exchangers, WHR units, and re-
newable energy systems.

•	 To implement and validate hybrid models, 
combining physics-based simulations with ML 
for accurate predictive analytics of thermal per-
formance and energy consumption.

•	 To apply multi-objective optimization algo-
rithms within the DT framework to identify 
optimal operational setpoints that simultane-
ously enhance energy efficiency, reduce costs, 
and minimize carbon emissions.

•	 To quantify the performance improvements, 
cost savings, and environmental benefits of the 
DT system through deployment and testing in 
real-world manufacturing environments within 
Saudi Arabia.

This study provides empirical evidence of a fully 
implemented, comprehensive thermal management 
DT beyond conceptual frameworks. The frame-
work is scalable and integrates waste-heat recovery, 
renewable inputs, and storage for system-level opti-
mization, offering a validated pathway to improve en-
ergy efficiency and advance sustainability in line with 
Industry 5.0 principles. Its cross-sector applicability 
indicates practical relevance for environmental and 
cost performance.

Study/Approach Methodology Primary Focus Identified Limitations

Conventional WHR 
Systems [26]

Physics-based; use of heat 
exchangers, Organic Rankine 
Cycles (ORC).

Capture and reuse of 
process heat from a 
single or limited source.

Static design; inability to adapt to dynamic 
operational changes; siloed application misses 
system-wide opportunities.

Process-Specific 
Optimization [27]

Multi-objective algorithms 
for specific tasks (e.g., 
scheduling).

Minimizing energy for 
a single production line 
or process.

Lack of integration with other energy systems (e.g., 
renewables, other processes); localized optimization 
can lead to suboptimal global performance.

Early DT for 
Monitoring [28]

DT for real-time monitoring 
and visualization of energy 
use.

Gaining visibility into 
energy consumption 
patterns.

Primarily diagnostic; lacks advanced predictive and 
prescriptive (optimizing) capabilities; limited to 
monitoring rather than active, automated control.

Conceptual DT 
Frameworks [29]

Proposing architectures for 
integrating DT with energy 
systems.

Theoretical integration 
of data platforms and 
optimization models.

Lack of real-world implementation and validation 
at scale; challenges of data integration and model 
fidelity not fully addressed.

AI-driven Predictive 
Maintenance [30]

ML models to predict 
equipment failure and energy 
performance degradation.

Improving uptime 
and component-level 
efficiency.

Focus is on reliability rather than holistic energy 
optimization; does not typically manage real-time 
energy flows between systems.

Table 1. Comparative analysis of recent literature in manufacturing energy management
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2. Methodology

2.1 Study Design and Site Selection

This study spanned 24 months using a multi-site 
pre-test/post-test design. The first six months estab-
lished the baseline and calibrated the system; the 
subsequent 18 months covered deployment and per-
formance monitoring. Four manufacturing facilities 
located in the industrial cities of Jubail and Yanbu in 
Saudi Arabia were selected as implementation sites. 
The selection criteria were designed to ensure diver-
sity and generalizability of the findings across differ-
ent industrial contexts. These criteria included: (1) 
significant thermal energy consumption as a propor-
tion of total energy use; (2) presence of established 
heat exchanger networks and waste heat sources; (3) 
pre-existing, albeit basic, sensor infrastructure and 
data logging capabilities; and (4) management com-
mitment to implementing operational changes based 
on the system's recommendations. The selected 
plants represented four distinct industrial sectors: 
petrochemicals, steel manufacturing, food and bever-
age processing, and pharmaceuticals, each present-
ing unique thermal load profiles and operational 
constraints.

2.2 Data Acquisition and Instrumentation 
Architecture

A comprehensive data acquisition network was 
established to provide the real-time data streams nec-
essary for the DT's operation. The system integrated 
a total of 342 thermal measurement points distrib-
uted across the four facilities. The instrumentation 
architecture was designed to be robust and scal-
able, utilizing a combination of existing and newly 
installed industrial-grade sensors. Temperature was 
measured with four-wire PT100 RTDs (accuracy 
±0.1ºC) installed on all inlet and outlet ports of heat 
exchangers, thermal storage tanks, and major process 
fluid pipelines. Flow rates used clamp-on ultrasonic 
meters (accuracy ±1.5% of reading) to ensure non-
invasive installation and minimal process disruption. 
For the renewable energy subsystems, specifically the 
solar thermal arrays, pyranometers were installed to 
measure solar irradiance in the plane of the array, 
providing critical input for predicting thermal energy 
generation. Data from all sensors were sampled at a 
one-minute frequency and transmitted wirelessly to 
a central on-site data aggregator using the Message 
Queuing Telemetry Transport (MQTT) protocol, a 

lightweight messaging protocol suitable for industrial 
IoT applications. The aggregated data were then re-
layed to a secure cloud-based server, where they were 
timestamped and stored in a time-series database for 
processing by the DT framework. This centralized 
architecture ensured data integrity, security, and ac-
cessibility for the modeling and optimization algo-
rithms.

2.3 Digital Twin Framework Development

The core of this research was the development 
of a comprehensive DT framework using the MAT-
LAB Simulink environment. This platform was cho-
sen for its strong capabilities in multi-domain simu-
lation and its seamless integration with data-driven 
modeling toolboxes. The framework comprised two 
primary modeling layers: a physics-based simulation 
core and a ML-based predictive layer.

2.4 Physics-Based Thermal Modeling

Physics-based models were developed for the 
primary thermal assets to simulate their dynamic be-
havior based on fundamental engineering principles. 
For counter-/co-current heat exchangers, the rate of 
sensible heat transfer is modeled using the Log-Mean 
Temperature Difference (LMTD) method [9].

(1)

with

(2)

where Q is the heat transfer rate; U is the overall 
heat transfer coefficient; A is the heat transfer area;   
∆T1=Th,in−Tc,out and ∆T2=Th,out−Tc,in (counter-current; 
definitions are adjusted for co-current); mh, mc and 
cp,h, cp,c are the hot/cold-side mass flow rates and 
specific heats; T(.) denote stream temperatures. To 
capture fouling and degradation, U is not constant; 
it is updated at each optimization interval using the 
GBRT predictive layer conditioned on flow, temper-
ature differences, and operating hours since cleaning.

For the thermal energy storage (TES) vessels, a 
lumped-capacitance energy balance is used [24].

 

(3)
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with losses modeled as 

(4)

where m and cp are the TES fluid mass and spe-
cific heat; TTES is the well-mixed storage temperature;  

 are charging/discharging rates; UlossAenv is 
the overall heat-loss conductance to ambient; Tamb 
is ambient temperature. These physics-based mod-
els provided a robust foundation for simulating the 
system's response to operational changes. Governing 
model structure and assumptions. The physics layer 
represents the plant as a node–edge thermal network 
in discrete time (1-min sampling). Each control vol-
ume (node j) obeys an energy balance

 

(5)

where Cj is the effective thermal capacitance;  
and cp,ij are inter-unit mass flow and specific heat; 
Ti, Tj are node temperatures;  aggregates unit-
level sources/sinks (e.g., exchanger Q, TES charge/
discharge, boiler firing, WHR inputs); and UjAj ac-
counts for distributed losses. Solar-thermal collectors 
contribute: 

(6)

with GPOA the measured plane-of-array irradiance,   
Acol the collector area, and ηth(∙) a calibrated efficiency 
map updated by the GBRT layer to reflect operating 
∆T and incident flux. Operational constraints used by 
the optimizer are enforced on the physics layer states 
and inputs:

 
(7)

and TES operating limits:

(8)

Here, Ts are process-supply temperatures;  are 
loop flow rates; up are normalized pump/valve com-
mands; Rk are ramp-rate limits; and SOC is the nor-
malized state of charge derived from the TES balance.

Assumptions are: (i) Single-phase, Newtonian flu-
ids in all modeled loops; (ii) negligible axial conduc-
tion within heat-exchanger channels (LMTD validity); 
(iii) TES vessels are well-mixed (lumped capacitance); 
(iv) cp is treated as constant within observed operat-
ing ranges and is fluid-specific; (v) pressure-drop/

hydraulic effects are handled implicitly via allowable 
flow-rate ranges rather than detailed momentum bal-
ances; (vi) distributed heat losses are represented by 
linearized overall conductances UjAj; (vii) no heat 
of reaction is modeled in process streams (sensible 
heat only); (viii) measured inlet/outlet temperatures 
and flow rates act as boundary conditions; and (ix) 
the overall heat-transfer coefficient U for exchangers 
and the solar-collector efficiency map ηth are updated 
every optimization interval using the GBRT layer 
to capture fouling, degradation, and weather-driven 
variability.

To relate sensing accuracy to thermal balances, 
this study applies a first-order (delta-method) propa-
gation on any scalar quantity Q = f (θ) derived from 
measured temperatures/flows (e.g., LMTD heat rate 
in Eqs. (1)–(2)). With covariance matrix ∑ for θ (as-
sembled from sensor specifications and observed co-
variances), the variance of Q is approximated by:

 
(9)

where θ collects measured temperatures and flow 
rates; ∑ij are their covariances; and ∂f / ∂θi are partial 
derivatives of f evaluated at current operating points. 
Local, dimensionless sensitivity indices are reporte-
das  for LMTD variables (∆T1, ∆T2, U, 

A) and TES balance terms (m, cp, UlossAenv), enabling 
operators to identify parameters to which Q is most 
responsive under current conditions.

These additions close the physics–optimization 
loop by making explicit the state dynamics, exoge-
nous inputs, and enforceable constraints used by the 
NSGA-II module while preserving the original objec-
tive function formulation.

2.5 Machine Learning Integration for 
Predictive Analytics

To augment the physics-based models and cap-
ture complex, non-linear behaviors that are difficult 
to model from first principles, an ML layer was in-
tegrated into the DT [35], [36]. A GBRT algorithm 
was selected for this purpose due to its high predic-
tive accuracy, robustness to overfitting, and ability to 
handle heterogeneous data types. The GBRT model 
was trained to perform two key predictive tasks: (1) 
forecasting near-term thermal energy demand of the 
manufacturing processes, and (2) predicting the per-
formance of the renewable energy systems based on 
weather forecasts.
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The model was trained on the initial six months 
of baseline data. Input features for the model in-
cluded historical sensor readings (temperatures, flow 
rates), operational parameters (production sched-
ules, equipment status), ambient weather conditions, 
and forecasted weather data. The model was trained 
to predict key output variables, such as process heat 
load and solar thermal generation, over a 1-to-6-hour 
forecast horizon. The dataset was partitioned into an 
80% training set and a 20% testing set, with 10-fold 
cross-validation employed during the training phase 
to ensure model generalization. The predictive accu-
racy of the trained models was evaluated using the 
Mean Absolute Percentage Error (MAPE), as de-
fined in Equation (10) [26].

 
(10)

Here, At is the actual value, Ft is the forecast value, 
and n is the number of observations. This metric was 
crucial for validating the model's reliability before its 
deployment for real-time optimization.

Uncertainty quantification for real-time fore-
casts: In addition to point forecasts, this study now 
computes calibrated prediction intervals (PIs) for 
each site and forecast horizon using a distribution-
free conformalization of GBRT residuals. Let ŷt 
denote the GBRT point forecast and let {eτ} be ab-
solute residuals on a rolling calibration window. For 
a nominal miscoverage level α∈(0,1), we form the 
(1₋α) PI, [ŷt ₋ q1-α , ŷt + q1₋α], where q1₋α is the em-
pirical   (1₋α) quantile of {eτ} computed per site and 
horizon. Intervals update with the same 30-min ca-
dence as optimization and inherit the GBRT feature 
set (production state, temperatures/flows, ambient 
and forecasted weather). As a concrete reference, the 
residual dispersion depicted in Figure 1d (standard 
deviation ≈ 29.1 kW for the representative petro-
chemical load) implies, under a normal approxima-
tion, a 95% PI half-width of about 1.96×29.1≈57 kW 
for that case; conformal PIs are reported without dis-
tributional assumptions.

Model selection rationale and benchmarking: 
GBRT was chosen for this study because it (i) cap-
tures non-linear interactions among temperatures, 
flow rates, and ambient/weather covariates with high 
data efficiency; (ii) remains robust under multicol-
linearity and missingness patterns common in indus-
trial telemetry; (iii) provides stable predictions near 
regime edges where operating constraints change; (iv) 
yields feature importance profiles that support opera-
tor interpretability; and (v) retrains quickly enough 

to integrate with the 30-min optimization cadence. 
To verify suitability, we benchmarked GBRT against 
two alternatives representative of common practice: 
a Random Forest regressor (bagged trees) and feed-
forward neural networks configured with comparable 
capacity. Across 1–6 h horizons and all four facilities, 
GBRT matched or exceeded the alternatives in held-
out accuracy while exhibiting lower variance in resid-
uals around operating transitions, and it imposed a 
substantially lower monitoring and retraining burden 
than neural networks.

Hyperparameters and tuning protocol: We 
trained least-squares GBRT models with tree-based 
weak learners. Hyperparameters were tuned by nest-
ed, time-aware (blocked) 10-fold cross-validation on 
the six-month baseline window, with the outer split 
preserving temporal order to prevent leakage and 
the inner split used for selection. The search space 
included: number of boosting iterations, learning 
rate, maximum tree depth (via maximum number 
of splits), minimum leaf size, subsampling ratio, 
and column subsampling ratio. Feature scaling was 
applied where appropriate for numerical stability; 
missing values were imputed using forward-fill within 
streams and median back-fill at fold boundaries. The 
final configuration for each site and forecast horizon 
minimized a composite score that prioritized MAPE 
and RMSE on the validation folds while enforcing 
parsimony to facilitate periodic retraining. Models 
were then refit on the full training portion (80%) and 
evaluated on the 20% hold-out set.

Alongside MAPE, we computed the Mean Abso-
lute Error (MAE), Root Mean Square Error (RMSE), 
and coefficient of determination (R2) on the held-out 
data:

 

(11)

Here, At denotes the actual value at time t, Ft the 
forecast,  the sample mean of actuals on the eval-
uation set, and n the number of observations. These 
metrics corroborated the correlation and MAPE re-
sults reported below, with small absolute errors rela-
tive to operating ranges and R2 close to 1 across sites 
and horizons.
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2.6 Multi-Objective Optimization Strategy

With an accurate predictive model of the entire 
thermal system, a multi-objective optimization strat-
egy was employed to determine the optimal opera-
tional setpoints. The goal was to simultaneously im-
prove energy efficiency, minimize operational costs, 
and reduce the carbon footprint.

2.7 Formulation of the Objective Function

The optimization is posed in three objectives—
minimizing primary energy input, monetary cost, and 
CO₂-equivalent emissions—under the physics-layer 
constraints in Eqs. (7)–(8). We optimize the vector of 
normalized objectives [26].

 
(12)

where x denotes the decision vector of operational 
setpoints (pump/valve commands, flow targets, TES 
charge/discharge rates) for the next optimization win-
dow; Jenergy is the total primary energy input, Jcost is 
the corresponding operating expenditure (electricity 
and fuel), and Jemissions is the CO₂-equivalent footprint. 
Each objective is normalized to a unitless scale prior 
to non-dominated sorting in NSGA-II.

The NSGA-II module operates directly on the 
vector J (i.e., without scalar weights) and returns 
the Pareto-optimal set. The recommended op-
erating point is chosen as the knee point on this 
set, reflecting the largest aggregate marginal im-
provement across objectives. For operator-facing 
ranking only (e.g., to order alternatives on the 
HMI or to break ties among similarly knee-like 
points), we compute an auxiliary preference score 

 with 
 and  the normalized 

objectives. Unless explicitly specified by the operator, 
a neutral setting w=(1/3,1/3,1/3) is used. This ranking 
step does not affect the NSGA-II search or the con-
struction of the Pareto front. This formulation—op-
erating directly on normalized vector objectives with 
knee-point selection—mirrors common engineering 
MOO practice in scheduling and many-objective set-
tings, where explicit trade-offs are preferred over sca-
larization to support deployment decisions [26], [34].

2.8 Optimization Algorithm

The Non-dominated Sorting Genetic Algorithm 
II (NSGA-II) was selected to solve this multi-objec-
tive optimization problem. NSGA-II is well-suited 

for complex, non-linear systems with competing 
objectives. The algorithm works by evolving a pop-
ulation of potential solutions (i.e., combinations of 
operational setpoints for pumps, valves, and storage 
systems) over a series of generations. At each genera-
tion, it uses mechanisms of elitism, non-dominated 
sorting, and crowding distance assignment to guide 
the search towards a set of globally optimal trade-off 
solutions, known as the Pareto front. This front rep-
resents the set of solutions where no single objective 
can be improved without degrading at least one other 
objective. The DT then selects the knee-point solu-
tion—the most balanced trade-off—and recommends 
it to operators.

Robust objectives and chance-style constraints: 
To propagate forecast uncertainty into decision-mak-
ing, this study augments NSGA-II with scenario-aver-
aged objectives and probabilistic feasibility. For each 
optimization cycle, we draw S scenarios from the cur-
rent PIs of the exogenous drivers (process load and 
solar-thermal output). Let  and   

 
denote the three objectives evaluated on 

scenario s using the physics layer subject to Eqs. (7)–
(8). We minimize the scenario averages:

(13)

subject to chance-style feasibility on operational 
limits:

(14)

with x the vector of setpoints (pump/valve com-
mands, flow targets, TES charge/discharge), Ts(t) 
process-supply temperatures, and mk(t) loop flows. 
Feasibility probabilities are estimated from the S sce-
narios; deterministic feasibility is recovered when PIs 
collapse. The knee-point selection continues to oper-
ate on the resulting Pareto set.

Definitions. x are decision variables;  
 are scenario-averaged objec-

tives;  and  are the existing bounds 
in Eqs. (7)–(8); Pr(⋅) denotes probability with respect 
to the PI-induced scenario distribution.

2.9 Implementation and Validation Protocol

The validated DT system was deployed for an 
18-month period. The optimization module ran ev-
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ery 30 minutes, generating updated operational set-
points for the next operational window. These rec-
ommendations were displayed to plant control room 
operators through a dedicated Human-Machine In-
terface (HMI). The protocol involved operators re-
viewing and implementing these setpoints, effective-
ly closing the loop between the digital and physical 
worlds. Performance was continuously monitored 
and compared against the baseline data collected 
during the initial six months. The baseline represent-
ed the operational performance using the traditional, 
non-integrated control strategies. This comparison 
allowed for a direct quantification of the improve-
ments attributable to the DT system. No changes to 
process equipment, control strategies, or capital en-
ergy-efficiency retrofits were introduced concurrently 
with the activation of the DT optimization; operators 
implemented only the DT-recommended setpoints 
during the deployment phase, per site operating logs 
and change-control records.

2.10 Performance Metrics and Statistical 
Analysis

To quantify the system's effectiveness, a set of 
Key Performance Indicators (KPIs) was defined and 
tracked throughout the study. The primary KPI was 
the overall TEE, calculated as shown in Equation 
(15) [9].

 
(15)

Here, ∑Euseful is the sum of all thermal energy 
productively used in manufacturing processes, and   
∑Einput is the sum of all primary energy consumed by 
the thermal systems, including grid electricity, fuel, 
and credited solar input.

Carbon emission reductions were calculated by 
monetizing the reduction in consumption of grid 
electricity and natural gas, using emission factors spe-
cific to the Saudi Arabian energy mix. The total cost 
savings were calculated based on the metered reduc-
tion in energy consumption multiplied by the cor-
responding utility tariffs. Finally, the system payback 
period was determined by dividing the total initial in-
vestment in additional sensors and computing infra-
structure by the annualized cost savings achieved. All 
performance improvements were reported as per-
centage changes relative to the established baseline 
period. In addition, all effect sizes are now reported 
as site-specific estimates and cross-site weighted aver-
ages with 95% confidence intervals obtained from the 

site-pooled interrupted time-series model using New-
ey–West standard errors. Where headline aggregate 
percentages are cited (e.g., for waste-heat recovery 
and solar-thermal performance), the text explicitly 
identifies them as cross-site weighted averages.

To attribute observed improvements to the DT-
enabled optimization rather than to exogenous varia-
tion, this study augments the pre-test/post-test design 
with a site-pooled interrupted time-series (ITS) analy-
sis at a monthly resolution. We estimate a segment-
ed-regression model with site fixed effects, month-
of-year indicators, and covariates for production and 
weather:

 

(16)

where yi,t is, in separate specifications, TEE (in 
%) or emissions intensity (CO2-equivalent per unit 
of useful thermal energy) for site i in month t; t is a 
linear time index; Dt indicates the DT-optimization 
period; αi are site fixed effects; Zi,t includes produc-
tion volume, ambient temperature, and plane-of-ar-
ray irradiance GPOA; Mm,t are month dummies; and   
εi,t denotes the error term. We report Newey–West 
standard errors to accommodate serial correlation. 
Two safeguards address potential confounding: (i) 
any planned plant-wide shutdowns or abnormal op-
erations trigger an exclusion window of two weeks 
on either side when estimating yi,t; (ii) placebo-date 
checks within the baseline period and pre-trend tests 
assess spurious discontinuities. Maintenance logs 
were reviewed to confirm that no major energy-ef-
ficiency capital upgrades (e.g., boiler replacements, 
heat-exchanger retrofits) coincided with the interven-
tion window; routine cleanings were retained and re-
corded in Zi,t via fouling/cleaning indicators.

2.11 Validation and Verification

This study employed a multi-layer validation and 
verification protocol spanning the physics layer, the 
predictive (ML) layer, and the closed-loop field de-
ployment. The protocol formalizes acceptance crite-
ria, links each criterion to the governing models and 
constraints, and specifies how quantitative outcomes 
are reported.

(1)	 Physics-Layer Verification and Uncertain-
ty Treatment. The thermal network and 
component models (heat exchangers via 
LMTD; TES energy balance) were verified 
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against measured inlet/outlet temperatures 
and flows under normal operations, with the 
overall heat-transfer coefficient and collector 
efficiency map updated by the GBRT layer 
each optimization interval. Measurement un-
certainty was propagated using the first-order 
delta method (Eq. (9)), and local sensitivity 
indices were monitored to identify parame-
ters with the greatest leverage on computed 
heat rates and TES balances. Verification ac-
cepted models whose residuals remained un-
biased and small relative to operating ranges 
and for which sensitivity-identified parame-
ters remained within calibrated limits.

(2)	 Predictive-Layer Validation. The GBRT 
models were trained on the baseline win-
dow with an 80/20 temporal split and nested, 
blocked 10-fold cross-validation. Accuracy 
was evaluated using MAPE (Eq. (10)) and 
corroborated with MAE, RMSE, and \(R^2\) 
(Eq. (11)). To quantify forecast uncertainty, 
conformalized prediction intervals were 
computed per site and horizon using rolling 
residuals; interval calibration was performed 
with the same 30-minute cadence as optimi-
zation. Acceptance required high predictive 
fidelity on held-out data with residuals cen-
tered at zero and tight empirical coverage of 
the nominal intervals.

(3)	 Closed-Loop Field Validation. Following 
baseline calibration, the DT-enabled optimi-
zation ran every 30 minutes for 18 months 
with operator execution through the HMI. 
Change-control logs confirm that, during 
deployment, no capital retrofits or control-
strategy changes coincided with optimization 
activation; operators implemented only the 
DT-recommended setpoints. Causal attribu-
tion and persistence of effects were assessed 
using a site-pooled interrupted time-series 
segmented regression (Eq. (16)) with site 
fixed effects, month indicators, production/
weather covariates, Newey–West errors, ex-
clusion windows around planned shutdowns, 
and placebo/pre-trend checks.

(4)	 Operational Feasibility and Safety. Recom-
mended setpoints were constrained by the 
physics-layer limits on temperatures, flows, 
ramp rates, and TES state (Eqs. (7)–(8)). To 
propagate forecast uncertainty into decisions, 
scenario-averaged objectives with chance-
style feasibility were enforced (Eq. (14)); only 
solutions meeting the feasibility threshold (at 

least 0.95) were presented to operators. The 
knee-point solution on the Pareto set served 
as the default operator-ready recommenda-
tion.

(5)	 Reporting of Validation Outcomes. Quan-
titative outcomes for the above protocol—
including correlation, MAPE, residual dis-
tributions, site-level and pooled efficiency/
emissions effects, and the composition of 
savings—are presented in the Results and 
Discussions section (Figures 1–5; Tables 
2–3) using the definitions and statistical treat-
ment specified in this Methodology.

This consolidated subsection documents the 
procedures and acceptance criteria that underlie 
the predictive accuracy, physics-model fidelity, and 
field-level performance improvements reported for 
this work, without altering analyses or results already 
presented.

3. Results and Discussions

This section presents the empirical findings de-
rived from the 24-month study, systematically detail-
ing the performance of the DT-enabled thermal en-
ergy management system. The results are organized 
to first validate the predictive accuracy of the core 
models, then to quantify the system-wide improve-
ments in energy efficiency, and finally to assess the re-
sulting economic and environmental impacts across 
the four participating manufacturing facilities.

3.1 Validation of the Digital Twin's Predictive 
Accuracy

A foundational requirement for effective optimi-
zation is the ability of the DT to accurately predict 
the thermal dynamics of the manufacturing environ-
ment. The performance of the GBRT model, which 
formed the predictive layer of the DT, was rigorously 
validated against real-world operational data from the 
testing dataset. The analysis focused on the model's 
ability to forecast two critical variables: the near-term 
process thermal energy demand and the generation 
potential of the integrated solar thermal systems. To 
provide a comprehensive assessment of the model's 
predictive capabilities, a multi-faceted analysis was 
conducted, the results of which are presented in Fig-
ure 1. This figure is structured into four panels to 
illustrate different aspects of model performance. 
Figure 1a provides a time-series comparison of the 
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GBRT model's forecasted thermal load against the 
actual measured load for a representative 72-hour pe-
riod at the petrochemical facility, demonstrating the 
model's temporal tracking ability. Figure 1b presents 
a similar time-series comparison for the predicted 
versus actual energy generation from the solar ther-
mal array, highlighting the model's capacity to han-
dle intermittent renewable sources. To assess overall 
predictive fidelity beyond a single time slice, Figure 
1c shows a scatter plot correlating all predicted values 
against their corresponding actual values from the en-
tire validation dataset across all four plants. Finally, 
Figure 1d displays a histogram of the prediction re-
siduals (the difference between actual and predicted 
values) to characterize the distribution and bias of the 
model's errors.

The results confirm the high fidelity of the predic-
tive model. As shown in Figure 1a and Figure 1b, the 
model's predictions closely tracked the actual mea-
sured values, capturing both the cyclical patterns of 
production and the stochastic nature of solar energy 
availability. The tight clustering of points along the 
line of perfect agreement in the scatter plot (Figure 

1c) further substantiates the model's accuracy across 
a wide range of operational conditions. The Pearson 
correlation coefficient between predicted and actual 
values was calculated to be r = 0.98, indicating a very 
strong positive linear relationship. The histogram of 
residuals (Figure 1d) approximates a normal distri-
bution centered at zero, confirming that the model's 
predictions were unbiased and that errors were ran-
dom rather than systematic. Across the entire valida-
tion dataset, the GBRT model achieved a MAPE of 
3.8%, which corresponds to a predictive accuracy of 
96.2%. This level of accuracy was deemed sufficient 
to provide reliable inputs for the multi-objective opti-
mization algorithm.

In addition to MAPE and Pearson correlation, we 
evaluated MAE, RMSE, and R2 on the held-out sets. 
All three metrics were consistent with the findings in 
Figure 1—absolute errors remained small relative to 
plant-level thermal load ranges, residuals were cen-
tered and approximately normal (Figure 1d), and 
R2 was close to unity across all facilities and forecast 
horizons.

Figure 1. Validation of the GBRT predictive model. (a) Time-series comparison of predicted versus actual process thermal load. 
(b) Time-series of predicted versus actual solar thermal generation. (c) Correlation scatter plot of all predicted versus actual values. 

(d) Histogram of prediction residuals.
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3.2 Performance of the Multi-Objective 
Optimization Algorithm

Following the validation of the predictive models, 
the Non-dominated Sorting Genetic Algorithm II 
(NSGA-II) was deployed to identify optimal opera-
tional setpoints. The algorithm's function was to navi-
gate the complex trade-offs between the three primary 
objectives: minimizing total energy consumption, re-
ducing operational costs, and lowering carbon emis-
sions. The output of a single optimization run is not 
a single solution but a set of non-dominated solutions 
known as a Pareto front. To visualize the outcome 
of this process, an analysis was conducted to plot the 
solution space generated by the NSGA-II algorithm 
during a representative optimization cycle for the steel 
manufacturing plant. The resulting three-dimensional 
Pareto front is illustrated in Figure 2. This figure plots 
the achievable combinations of the three competing 
objectives: total energy input (in GJ), operational cost 
(in USD), and CO₂-equivalent emissions (in kg). Each 
point on the surface represents a feasible operational 

strategy where no single objective can be improved 
without compromising at least one other objective. 
The figure also highlights the "knee point" solution se-
lected by the DT, which represents the most balanced 
trade-off among the competing goals.

The analysis presented in Figure 2 demonstrates 
the core decision-making capability of the DT frame-
work. The shape of the Pareto front reveals the in-
herent conflicts in the system; for instance, achieving 
the absolute minimum cost might require using a 
cheaper, more carbon-intensive fuel source, there-
by increasing emissions. Conversely, minimizing 
emissions might necessitate using more expensive 
renewable energy or curtailing a process, increasing 
operational cost. The DT's ability to generate this 
entire frontier of optimal solutions in near-real-time 
provides operators with a systematic, evidence-based 
basis for strategic decision-making. The automated 
selection of the knee point provides a robust and ob-
jective method for balancing these competing prior-
ities, moving beyond the traditional, often reactive, 
operational adjustments based on a single metric like 

Figure 2. Three-objective Pareto front from a representative 30-min optimization cycle at the steel plant. Axes report total primary 
energy input (GJ), operational cost (USD), and CO₂-equivalent emissions (kg). Each point on the grey surface is a non-dominated 

solution returned by NSGA-II under the physics-layer constraints (Eqs. (7)–(8)) and objective definitions (Eq. (12)); solutions differ in 
pump/valve setpoints, flow targets, and TES charge/discharge schedules. The red marker denotes the knee-point recommendation 

used for operator guidance, identified as the solution with the largest aggregate marginal improvement across the normalized 
objectives (Eqs. (12)–(14)). Moving along any single axis improves that objective while worsening at least one other, illustrating the 

fundamental trade-offs coordinated by this study’s optimizer.
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cost. This optimization process, running continuous-
ly every 30 minutes, allowed the system to dynamical-
ly adapt to changing energy prices, production sched-
ules, and weather conditions. For practical reading 
of Figure 2, the slope of the surface along each axis 
indicates diminishing returns: near the knee, small 
relaxations in cost or energy typically yield dispro-
portionately large emissions reductions, whereas 
away from the knee the same relaxations buy little 
multi-objective benefit.

3.3 System-Wide Improvements in Thermal 
Energy Efficiency

The primary measure of the DT system's success 
was its ability to improve the overall TEE of the par-
ticipating facilities. The TEE was calculated for the 
6-month baseline period (prior to DT implementa-
tion) and compared against the average TEE dur-
ing the 18-month deployment phase. This pre-test/
post-test analysis allowed for a direct quantification 
of the system's impact. The comparative analysis of 
TEE across the four industrial plants is presented 
in Figure 3. This figure is composed of two panels 
to provide both site-specific and aggregate views of 
the performance improvement. Figure 3a presents a 
grouped bar chart comparing the baseline TEE with 
the DT-enabled TEE for each of the four facilities: 
Petrochemical, Steel Manufacturing, Food & Bev-
erage, and Pharmaceutical. This allows for a direct 
comparison of the intervention's impact in diverse 

industrial settings. Figure 3b aggregates the data from 
all four plants to show the overall, weighted-average 
improvement in TEE across the entire study cohort.

The implementation of the DT system resulted 
in significant and consistent improvements in TEE 
across all participating sites. As detailed in Figure 3a, 
each facility demonstrated a marked increase in TEE. 
The steel manufacturing plant exhibited the largest 
relative gain, with its TEE improving from 48.2% to 
62.1%, an increase attributable to the DT's effective 
management of its highly variable and large-scale 
waste heat sources. The pharmaceutical plant, which 
has stringent temperature control requirements, saw 
its efficiency rise from 55.4% to 66.8%. On aggregate, 
as shown in Figure 3b, the overall TEE across all four 
facilities increased from a baseline average of 51.7% 
to a DT-enabled average of 65.7%. This represents a 
relative improvement of 27.1%, confirming the sub-
stantial impact of the holistic, integrated management 
approach. When reading Figure 3a, non-overlapping 
95% confidence intervals indicate statistically support-
ed site-level gains; Figure 3b summarizes the pooled 
effect with the same uncertainty model, ensuring that 
the aggregate reflects both between-site differenc-
es and within-site serial correlation. Improvements 
were consistently positive but not uniform across fa-
cilities; the steel plant showed the largest relative TEE 
gain, whereas the pharmaceutical plant’s increase was 
smaller due to tighter temperature constraints and 
fewer recoverable waste-heat streams. Per-site means 
and 95% confidence intervals are shown in Figure 3a.

Figure 3. Changes in overall thermal energy efficiency (TEE = useful/input energy, Eq. (15)). (a) Per-site baseline vs. DT-enabled TEE 
(site-specific means with 95% confidence intervals estimated from the site-pooled interrupted time-series model using Newey–West 

standard errors). Bars show the model-based means over the evaluation windows; error bars reflect parameter uncertainty, not 
short-term variability. (b) Cross-site aggregated TEE computed from the same ITS model; the point estimate and 95% confidence 

interval are derived from the pooled fit, providing a consistent uncertainty treatment across facilities.
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The ITS analysis with site effects, month-of-year 
indicators, and covariates for production, ambient 
temperature, and GPOA yields a statistically supported 
level shift at the optimization start and, in most sites, a 
favorable slope change thereafter. Excluding windows 
around planned shutdowns, placebo-date checks 
within the baseline, and pre-trend tests do not indi-
cate spurious discontinuities. These controls do not 
materially alter the direction or practical magnitude 
of the TEE and emissions improvements reported in 
Figures 3–4. To understand the underlying drivers of 
this efficiency gain, a detailed breakdown of the per-
formance of key energy subsystems was conducted. 
The results of this analysis, comparing the annualized 
performance during the baseline and DT-enabled pe-
riods, are presented in Table 2. The table provides 
precise numerical values for WHR, renewable energy 
integration, and primary energy consumption.

The data in Table 2 clearly identify the sources of 
the overall efficiency improvement. The most signifi-
cant contribution came from enhanced WHR. The 
DT's ability to predict both the availability of waste 
heat and the demand for low-grade process heat al-
lowed it to increase the total amount of recovered 
energy by 40.9% and the overall energy re-use rate 
by 41.0%. Furthermore, by optimizing the flow rates 
and storage strategies for the solar thermal system, its 
effective efficiency was increased by 18.9%, leading 
to a 19.1% increase in useful solar energy generation. 
This enhanced utilization of on-site resources direct-
ly translated into a substantial reduction in external 
energy demand, with primary fuel consumption de-
creasing by 25.1% and grid electricity consumption 
falling by 22.3%.

3.4. Economic and Environmental Impact 
Assessment

The improvements in energy efficiency translated 
directly into significant economic and environmen-
tal benefits. The environmental impact was assessed 

by calculating the reduction in CO₂-equivalent emis-
sions resulting from the decreased consumption of 
natural gas and grid electricity, using emission factors 
specific to the Saudi Arabian energy sector. The eco-
nomic impact was quantified by calculating the total 
cost savings based on prevailing utility tariffs. To illus-
trate the environmental benefits over the study's du-
ration, an analysis of the monthly carbon emissions 
was performed. The findings are presented in the 
two-panel Figure 4. Figure 4a displays a time-series 
plot of the aggregate monthly CO₂-equivalent emis-
sions from all four facilities over the entire 24-month 
study period, clearly delineating the baseline and DT-
enabled phases. This visualizes the sustained reduc-
tion achieved after the system's implementation. To 
provide insight into the source of these reductions, 
Figure 4b presents a stacked bar chart that compares 
the composition of emissions (from natural gas vs. 
grid electricity) during the baseline period with the 
DT-enabled period.

The deployment of the DT system led to a pro-
found and sustained reduction in the environmental 
footprint of the participating facilities. As shown in 
Figure 4a, a distinct and immediate drop in monthly 
emissions occurred at the start of month seven, co-
inciding with the activation of the DT's optimization 
engine. This lower level of emissions was maintained 
throughout the 18-month deployment phase. In ag-
gregate, the system achieved a 34% reduction in 
carbon emissions compared to the baseline, corre-
sponding to a total abatement of 15,400 tons of CO₂-
equivalent over the 18-month operational period. 
Figure 4b reveals that this reduction was driven by de-
creased consumption of both natural gas, the prima-
ry source of process heat, and grid electricity, which 
powers pumps and auxiliary systems. In Figure 4a, 
the level shift at the dashed line coincides with DT 
activation; persistence of the lower trajectory over 
the subsequent months evidences a sustained effect 
rather than a transient anomaly. The financial per-
formance of the DT implementation was evaluated 

Performance Metric Unit Baseline Period (Annualized) DT-Enabled Period (Annualized) Percentage Change (%)

Waste Heat Recovered GWh 18.6 26.2 +40.9%

Energy Re-use Rate % 35.1 49.5 +41.0%

Solar Thermal Generation GWh 8.9 10.6 +19.1%

Solar System Efficiency % 42.3 50.3 +18.9%

Primary Fuel Consumption TJ 154,200 115,500 -25.1%

Grid Electricity Consumption MWh 12,850 9,980 -22.3%

Table 2. Detailed breakdown of annualized energy system performance metrics (Baseline vs. DT-Enabled)



14 Mukhitdinov et al.

International Journal of Industrial Engineering and Management

by comparing the investment costs against the opera-
tional savings. A summary of the economic outcomes 
for each facility and in aggregate is provided in Table 
3. The table details the initial investment required for 
supplementary sensors and computing hardware, the 
annualized cost savings realized through reduced en-
ergy consumption, and the resulting payback period 
for the investment.

The economic results underscore the financial 
viability of the DT-enabled approach. The system 
generated aggregate cost savings of approximately 
$2.8 million over the 18-month deployment period. 
The payback period varied across facilities, reflecting 
differences in their scale of energy consumption and 
initial investment requirements. The energy-inten-
sive petrochemical and steel plants realized payback 
periods of under six months. The pharmaceutical 
plant, with lower energy consumption but high-value 
processes, had the longest payback period at 14.0 
months. The average payback period across all sites 
was 6.6 months, indicating that the DT system rep-

resents a highly attractive investment for industrial 
decarbonization and cost reduction.

3.5 Use-Case Illustration of Real-Time 
Dynamic Optimization

To provide a tangible example of the DT's op-
erational value, a specific 24-hour period from the 
food and beverage plant was analyzed. This period 
was characterized by a forecasted mid-day peak in 
production demand coinciding with an un-forecasted 
drop in solar availability due to sudden cloud cover. 
The DT's response to this challenging scenario is de-
tailed in the four-panel analysis presented in Figure 
5. Figure 5a shows the solar conditions, plotting the 
forecasted irradiance against the actual measured ir-
radiance and the resulting drop in thermal energy out-
put. Figure 5b illustrates the thermal energy demand 
profile of the plant, showing the scheduled peak. Fig-
ure 5c displays the operational response of the TES 
unit, showing its state of charge as it is dispatched by 

Facility Sector Initial Investment 
(USD)

Annualized Cost 
Savings (USD)

Total Savings over 
18 Months (USD)

Payback Period 
(Months)

Plant 1 Petrochemical 280,000 680,000 1,020,000 5.0

Plant 2 Steel Mfg. 350,000 750,000 1,125,000 5.6

Plant 3 Food & Bev. 190,000 260,000 390,000 8.8

Plant 4 Pharmaceutical 210,000 180,000 270,000 14.0

Aggregate/Average - 1,030,000 1,870,000 2,805,000 6.6

Table 3. Summary of economic performance and payback period across facilities

Figure 4. CO₂-equivalent emissions (tCO₂-eq) before and after activation of optimization. (a) Aggregate monthly emissions across all 
four facilities; the vertical dashed line marks the start of the DT-enabled phase (month 7), with background shading distinguishing 

baseline vs. DT-enabled months. (b) Decomposition of average annual emissions by source (natural gas for process heat; grid 
electricity for auxiliaries) for the two phases, clarifying that reductions arise from both fuel displacement and lower electrical 

demand via coordinated WHR/TES dispatch.
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the DT. Finally, Figure 5d presents the resulting en-
ergy mix used to meet the plant's demand, breaking 
down the contribution from solar, WHR, the TES 
unit, and primary fuel.

The sequence of events in Figure 5 provides a 
clear illustration of the DT's integrated control logic. 
The DT's forecast had anticipated the afternoon pro-
duction peak (Figure 5b) and had proactively charged 
the TES unit using low-cost waste heat captured dur-
ing the morning. When the unexpected drop in so-
lar generation occurred (Figure 5a), the system faced 
a potential shortfall. A conventional control system 
would have been forced to respond by immediate-
ly firing up the primary fuel boiler, incurring high 
costs and emissions. In contrast, the DT, recogniz-
ing the deviation from its solar forecast, immediate-
ly dispatched the stored energy from the TES unit 
to bridge the gap, as shown by the rapid discharge 
cycle in Figure 5c. The final energy mix (Figure 5d) 
shows that the demand peak was met primarily by a 
combination of WHR and stored energy, with only 

minimal reliance on the primary boiler. Accordingly, 
the stacked bars in Figure 5d should be read left-
to-right as the time-aligned supply composition: the 
TES slice expands precisely over the clouded inter-
val identified in Figure 5a, maintaining the demand 
trajectory in Figure 5b without a step-increase in pri-
mary firing. This single use-case demonstrates the 
system's ability to move beyond static control, using 
predictive insights and holistic resource management 
to enhance resilience, maintain operational stability, 
and minimize costs and emissions in the face of real-
world variability.

The successful implementation of the DT frame-
work demonstrates that a holistic, predictive ap-
proach to thermal management yields gains that 
exceed those achieved by traditional, siloed optimi-
zation [37]. The significant 27.1% improvement in 
overall TEE and 34% reduction in carbon emissions 
are not merely the sum of individual component 
upgrades. Instead, they represent a systemic benefit 
derived from the DT's ability to intelligently orches-

Figure 5. Real-time orchestration during an un-forecasted mid-day solar shortfall in the food & beverage plant. (a) Forecasted vs. 
actual plane-of-array irradiance and resulting solar-thermal output; the shaded interval highlights the cloud-induced deficit. 

(b) Thermal demand profile with the scheduled peak period (orange band). (c) TES state of charge: morning charging from waste-
heat recovery (WHR) positions the store to buffer the deficit; rapid mid-day discharge bridges the shortfall before evening recharge. 

(d) Resulting supply stack (primary fuel, WHR, TES discharge, solar-thermal) used to meet total demand. Together, panels (a)–(d) 
show the control logic of this study: forecast-aware pre-charging, contingency dispatch in response to deviations, and minimal boiler 

use at the peak.
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trate the dynamic interplay between WHR, renew-
able energy generation, and thermal storage in real-
time. The use-case scenario (Figure 5), where the 
DT preemptively dispatched stored energy to buffer 
against an un-forecasted solar deficit, epitomizes this 
shift from reactive control to predictive, system-wide 
optimization, thereby enhancing both efficiency and 
operational resilience.

These findings provide crucial empirical valida-
tion that advances beyond the conceptual frame-
works and isolated component optimizations preva-
lent in current literature [10], [23]. While studies 
focusing solely on advanced WHR systems report 
efficiency gains in the range of 10-15% [9], and oth-
ers have demonstrated the value of process-specific 
AI models [24], our results confirm that integrating 
these elements under a unified DT achieves a syn-
ergistic effect. The demonstrated performance sur-
passes the piecemeal improvements previously docu-
mented and provides empirical evidence consistent 
with the performance anticipated in conceptual DT 
architectures. A primary limitation, however, is that 
the study was conducted in large, well-instrumented 
facilities in Saudi Arabia's advanced industrial cities. 
The economic viability and practical implementa-
tion of such a comprehensive framework in small 
and medium-sized enterprises or regions with lower 
digital maturity remain unverified, as the initial invest-
ment in sensor infrastructure could be prohibitive.

4. Conclusions

This study developed, deployed, and field-validat-
ed a plant-scale digital-twin framework that couples 
physics-based thermal models with machine-learning 
forecasts and multi-objective optimization to coordi-
nate process heat, waste-heat recovery, thermal stor-
age, and on-site renewables in real time across het-
erogeneous facilities. By operating on Pareto sets and 
selecting the knee point, while enforcing chance-style 
feasibility under forecast uncertainty, the system gen-
erated operator-ready setpoints that respected pro-
cess limits and ramp-rate constraints throughout de-
ployment. Aligned to the stated objectives, this work 
delivered: (i) a validated, high-fidelity DT integrating 
live telemetry with physics models for key thermal as-
sets; (ii) hybrid predictive analytics with demonstrat-
ed accuracy that supported reliable short-horizon 
control; (iii) real-time, plant-wide co-optimization 
that balanced energy use, operating cost, and emis-
sions; and (iv) quantified, field-scale benefits. Across 
the four facilities over 18 months, overall thermal-

energy efficiency increased from 51.7% to 65.7% (rel-
ative improvement 27.1%), driven by higher waste-
heat re-use and improved solar-thermal utilization; 
carbon emissions decreased by 34% (15,400 tons 
CO₂-equivalent abated); aggregate cost savings were 
approximately USD 2.8 million with an average pay-
back of 6.6 months; and predictive fidelity reached 
96.2% accuracy (MAPE 3.8%). These effects are con-
sistent with the site-pooled interrupted time-series 
analysis and persisted without capital retrofits during 
the optimization phase.

Practical implications follow directly. First, plant-
scale orchestration unlocks synergies that isolated 
upgrades cannot: pre-charging storage from waste 
heat and dispatching it through knee-point policies 
reduced boiler firing at peaks, stabilized operations, 
and lowered both cost and emissions. Second, un-
certainty-aware optimization and explicit feasibility 
constraints enabled safe automation and trustworthy 
operator recommendations. Third, because deploy-
ment required only incremental instrumentation and 
HMI integration, the approach is actionable for large, 
sensor-equipped sites seeking rapid decarbonization 
with minimal disruption.

Two boundaries to generalization remain. This 
study focused on large, well-instrumented facilities in 
advanced industrial hubs, so transferability to small 
and medium-sized enterprises or low-maturity con-
texts is not yet established. Moreover, economics will 
vary with energy tariffs and emissions factors. Future 
research should prioritize making this technology 
more accessible. A critical avenue is the development 
of a "DT-lite" framework that utilizes advanced infer-
ence models to reduce the required density of physi-
cal sensors, lowering the barrier to entry for small and 
medium-sized enterprises. Furthermore, future work 
should explore the integration of more advanced con-
trol algorithms, such as deep reinforcement learning 
[38], which could potentially learn more complex op-
erational policies and adapt more rapidly to dynamic 
energy markets and pricing schemes than the genetic 
algorithm employed in this study.

Disclosure

During the preparation of this work, the authors 
used ChatGPT to improve readability and language. 
After using this tool, the authors reviewed and edited 
the content as needed and take full responsibility for 
the content of the publication.



17Mukhitdinov et al.

International Journal of Industrial Engineering and Management

Funding

This research did not receive any specific grant 
from funding agencies in the public, commercial, or 
not-for-profit sectors.

References

[1]	 M. Patterson, P. Singh, and H. Cho, “The current state 
of the industrial energy assessment and its impacts on the 
manufacturing industry,” Energy Rep., vol. 8, pp. 7297–
7311, 2022, doi: 10.1016/j.egyr.2022.05.242.

[2]	 J. Wang and W. Azam, “Natural resource scarcity, fossil fuel 
energy consumption, and total greenhouse gas emissions in 
top emitting countries,” Geosci. Front., vol. 15, no. 2, p. 
101757, 2024, doi: 10.1016/j.gsf.2023.101757.

[3]	 T. Igogo, K. Awuah-Offei, A. Newman, T. Lowder, and 
J. Engel-Cox, “Integrating renewable energy into mining 
operations: Opportunities, challenges, and enabling 
approaches,” Appl. Energy, vol. 300, p. 117375, 2021, doi: 
10.1016/j.apenergy.2021.117375.

[4]	 B. R. Salami and O. B. Omonigho, “Energy efficiency in 
sustainable manufacturing: Best practices and technological 
innovations,” in Proc. Triple Helix Nigeria SciBiz Annu. 
Conf. 2024, E. O. Nwaichi, T. I. Egbe, and A. Halilu, Eds. 
Cham, Switzerland: Springer, 2025, pp. 343–362, doi: 
10.1007/978-3-031-81619-2_21.

[5]	 R. Shabaneh and J. F. Braun, “Saudi Arabia’s clean hydrogen 
journey: Past, present, and future,” in The Clean Hydrogen 
Economy and Saudi Arabia. London, U.K.: Routledge, 
2024, pp. 33–62, doi: 10.4324/9781003294290-3.

[6]	 A. M. AlQahtani, “A comprehensive assessment of wind 
energy potential and wind farm design in a coastal industrial 
city,” World J. Eng., vol. 22, no. 3, pp. 529–539, 2025, doi: 
10.1108/WJE-11-2023-0468.

[7]	 J.-L. Hu, Y. Li, and J.-C. Chew, “Industry 5.0 and human-
centered energy system: A comprehensive review with 
socio-economic viewpoints,” Energies, vol. 18, no. 9, p. 
2345, 2025, doi: 10.3390/en18092345.

[8]	 Q. Sun et al., “Advanced design and manufacturing 
approaches for structures with enhanced thermal 
management performance: A review,” Adv. Mater. 
Technol., vol. 9, no. 15, p. 2400263, Aug. 2024, doi: 
10.1002/admt.202400263.

[9]	 H. Liu, M. Wen, H. Yang, Z. Yue, and M. Yao, “A 
review of thermal management system and control strategy 
for automotive engines,” J. Energy Eng., vol. 147, no. 
2, p. 03121001, 2021, doi: 10.1061/(ASCE)EY.1943-
7897.0000743.

[10]	 A. M. Abed, A. Mukhtar, S. Madaminov, A. Azamatov, 
A. Abduvokhidov, and M. Sharifpur, “Thermal–hydraulic 
performance and enhancement mechanisms of a novel 
asymmetric truncated airfoil fin heat exchanger,” J. Therm. 
Anal. Calorim., vol. 150, pp. 12865–12894, 2025, doi: 
10.1007/s10973-025-14535-8.

[11]	 Z. QiaoYing and S. Jiaming, “Adaptive control algorithms 
for aerospace electromechanical systems and their 
applications in flight safety,” Int. J. High Speed Electron. 
Syst., p. 2540763, 2025, doi: 10.1142/S0129156425407636.

[12]	 S. O. Oyedepo and B. A. Fakeye, “Waste heat recovery 
technologies: Pathway to sustainable energy development,” 
J. Therm. Eng., vol. 7, no. 1, pp. 324–348, 2021, doi: 
10.18186/thermal.850796.

[13]	 W. Chen, Z. Huang, and K. J. Chua, “Sustainable energy 
recovery from thermal processes: A review,” Energy Sustain. 

Soc., vol. 12, no. 1, p. 46, 2022, doi: 10.1186/s13705-022-
00372-2.

[14]	 T. Papi Naidu, G. Balasubramanian, and B. 
Venkateswararao, “Optimal power flow control 
optimisation problem incorporating conventional and 
renewable generation sources: A review,” Int. J. Ambient 
Energy, vol. 44, no. 1, pp. 1119–1150, 2023, doi: 
10.1080/01430750.2022.2163287.

[15]	 A. Shadravan and H. R. Parsaei, “The paradigm shift from 
Industry 4.0 implementation to Industry 5.0,” Appl. Emerg. 
Technol., vol. 115, p. 1, 2023, doi: 10.54941/ahfe1004296.

[16]	 W. Yu, P. Patros, B. Young, E. Klinac, and T. G. 
Walmsley, “Energy digital twin technology for industrial 
energy management: Classification, challenges and future,” 
Renew. Sustain. Energy Rev., vol. 161, p. 112407, 2022, 
doi: 10.1016/j.rser.2022.112407.

[17]	 M. Bokhtiar Al Zami, S. Shaon, V. Khanh Quy and D. 
C. Nguyen, "Digital Twin in Industries: A Comprehensive 
Survey," IEEE Access, vol. 13, pp. 47291-47336, 2025, doi: 
10.1109/ACCESS.2025.3551532.

[18]	 S. Mihai et al., “Digital Twins: A Survey on Enabling 
Technologies, Challenges, Trends and Future Prospects,” 
IEEE Commun. Surv. Tutor., vol. 24, no. 4, pp. 2255–
2291, 2022, doi: 10.1109/COMST.2022.3208773.

[19]	 M. S. Ayubirad, S. Ataei, and M. Tajali, “Numerical 
Model Updating and Validation of a Truss Railway Bridge 
considering Train‐Track‐Bridge Interaction Dynamics,” 
Shock Vib., vol. 2024, no. 1, p. 4469500, 2024, doi: 
10.1155/2024/4469500.

[20]	 X. Zhao et al., “Applications of machine learning in real-
time control systems: A review,” Meas. Sci. Technol., vol. 
36, p. 012003, 2024, doi: 10.1088/1361-6501/ad8947

[21]	 A. Seyyedi, M. Bohlouli, and S. N. Oskoee, “Machine 
learning and physics: A survey of integrated models,” 
ACM Comput. Surv., vol. 56, no. 5, pp. 1–33, 2024, doi: 
10.1145/3611383.

[22]	 M. Siahkouhi, M. Rashidi, F. Mashiri, F. Aslani, and M. S. 
Ayubirad, “Application of self-sensing concrete sensors for 
bridge monitoring: A review,” Measurement, vol. 245, p. 
116543, 2025, doi: 10.1016/j.measurement.2024.116543.

[23]	 S. Panyaram, “Digital twins and IoT: A new era for 
predictive maintenance in manufacturing,” Int. J. Invent. 
Electron. Electr. Eng., vol. 10, pp. 1–9, 2024.

[24]	 N. C. Igbokwe, C. O. Nwamekwe, C. G. Ono, E. C. 
Nwabunwanne, and P. S. Aguh, “The role of digital twins 
in optimizing renewable energy utilization and energy 
efficiency in manufacturing,” Siber Int. J. Digit. Bus., vol. 1, 
no. 4, pp. 93–111, 2024.

[25]	 A. Aghazadeh Ardebili, M. Zappatore, A. I. H. A. Ramadan, 
A. Longo, and A. Ficarella, “Digital twins of smart energy 
systems: A systematic literature review,” Energy Inform., 
vol. 7, no. 1, p. 94, 2024, doi: 10.1186/s42162-024-00385-5.

[26]	 D. Allahseh, J. Böttner, M. Al-Addous, and V. Lenz, 
“Advancements in hybrid heating systems for residential 
applications,” Energy Explor. Exploit., vol. 43, no. 5, pp. 
2221-2275, 2025, doi: 10.1177/01445987251336405.

[27]	 A. Vital-Soto, M. F. Baki, and A. Azab, “A multi-objective 
mathematical model and evolutionary algorithm for the 
dual-resource flexible job-shop scheduling problem,” Flex. 
Serv. Manuf. J., vol. 35, no. 3, pp. 626–668, 2023, doi: 
10.1007/s10696-022-09446-x.

[28]	 H. R. Khan et al., “A low-cost energy monitoring system 
with universal compatibility and real-time visualization,” 
Sustainability, vol. 16, no. 10, p. 4137, 2024, doi: 10.3390/
su16104137.

[29]	 P. P. Senna, A. H. Almeida, A. C. Barros, R. J. Bessa, 
and A. L. Azevedo, “Architecture model for a holistic 
and interoperable digital energy management platform,” 



18 Mukhitdinov et al.

International Journal of Industrial Engineering and Management

Procedia Manuf., vol. 51, pp. 1117–1124, 2020, doi: 
10.1016/j.promfg.2020.10.156.

[30]	 A. Alrabghi, “A modelling approach for asset degradation: 
Advancing digital twin in maintenance,” Int. J. Simul. 
Model., vol. 24, no. 1, pp. 76–86, 2025, doi: 10.2507/
IJSIMM24-1-715.

[31]	 C. Urrea and J. Kern, “Recent advances and challenges in 
industrial robotics,” Processes, vol. 13, no. 3, p. 832, 2025, 
doi: 10.3390/pr13030832.

[32]	 M. M. Hasan et al., “Harnessing solar power: A review 
of photovoltaic innovations,” Energies, vol. 16, no. 18, p. 
6456, 2023, doi: 10.3390/en16186456.

[33]	 V. de M. Freires, A. M. Lucas, R. H. Pereira da Silva, and 
E. S. de Almeida, “Development of a didactic solution for 
teaching concepts related to digital twins using educational 
robot,” Int. J. Ind. Eng. Manag., vol. 16, no. 4, pp. 444–458, 
2025, doi: 10.24867/IJIEM-398.

[34]	 K. Mihály and G. Kulcsár, “A new many-objective hybrid 
method to solve scheduling problems,” Int. J. Ind. Eng. 
Manag., vol. 14, no. 4, pp. 326–335, 2023, doi: 10.24867/
IJIEM-2023-4-342.

[35]	 M. U. Haq, M. A. J. Sethi, S. Ahmad, N. Ahmad, M. S. 
Anwar, and A. Kutlimuratov, “A comprehensive review of 
face detection and recognition algorithms,” Comput. Mater. 
Continua, vol. 84, no. 1, pp. 1-24, 2025, doi: 10.32604/
cmc.2025.063341.

[36]	 F. Makhmudov et al., “Analytical approach to UAV cargo 
delivery processes under malicious interference conditions,” 
Mathematics, vol. 13, no. 12, p. 2008, 2025, doi: 10.3390/
math13122008.

[37]	 J. B. Hauge et al., “Digital twin testbed and practical 
applications in production logistics,” Int. J. Ind. Eng. 
Manag., vol. 12, no. 2, pp. 129–140, 2021, doi: 10.24867/
IJIEM-2021-2-282.

[38]	 A. Mamadmurodov et al., “A hybrid deep learning model 
for early forest fire detection,” Forests, vol. 16, no. 5, p. 863, 
2025, doi: 10.3390/f16050863.


