
Faculty of Technical Sciences - Graphic Engineering and Design

23

Font hinting techniques and the importance
of applying these techniques for high-quality
display of fonts on the output device screen

Abstract:
In the era of contemporary and rapid way of life and with advancing digital technology, the display of electronic
content on different types of portable devices becomes a part of everyday life. Whether it is on the screen of a Tab-
let PC, mobile phone or e-book reader, the font needs to be designed in such a way that the displayed message is
received and understood as easy and efficiently as possible.
When it comes to digital font, intended for display on screen, it is necessary to take into account the properties of
the output device and font size to be used. Since the text is intended for display on small screens (especially in case
of portable devices), the used font should be adapted to such conditions, namely, it should be designed so as to be
readable and legible even at small sizes and at different resolutions of the device.
The integral part of contemporary outline fonts are additional instructions on how rasterizer is to render letters at
lower resolutions and lower font sizes. These instructions are known as hints, or hint mechanisms, and the process
of defining these instructions is called hinting.
The aim of this paper is to provide a theoretical basis for understanding the issues of the display of small sizes fonts
on screen. The paper will also elaborate the hinting techniques with emphasis on TrueType hint mechanisms that are
most suitable for high-quality display on the output device screen, as well as some methods of automatic hinting.
Theoretical basis introduced here, represent foundation on which further exploration will lay on. It is important for
broadening the knowledge in the field of rasterization and automatic hinting but also for finding new solutions for
the simpler and better hinting.

Keywords: Font rasterization, TrueType hinting, Font scaling, Gridfitting, Outline font

Banjanin Bojan1, Nedeljkovic Uroš1

1University of Novi Sad, Faculty of Technical Sciences, Department of Graphic engineering and design, Trg
Dositeja Obradovica 6, 21000 Novi Sad, Serbia,

Corresponding author: Banjanin Bojan
Email: bojanb@uns.ac.rs

Preliminary report
UDK: 655.24:655.262

First received: 23.04.2012.
Accepted: 06.06.2012.

Journal of Graphic Engineering and Design, Volume 3 (1), 2012.

24

Introduction

The most basic categorization of digital fonts is into
bitmap fonts and outline (vector) fonts. Bitmap fonts
are described in a series of pixels that define the letter
character. Unlike bitmap fonts, which are used on older
computers and in the memory of older dot matrix print-
ers, the advantage of vector fonts is that they can be
used on devices of different resolutions and in different
sizes, without having to design separate files for each
size and resolution. Whereas with bitmap font, a spe-
cially designed set of characters for each size and each
section was necessary, with vector font it is sufficient
to have one file for each style (regular, bold, italic, ...),
which can be used for any desired size.

Given that the output device screen is made up of many
elements (pixels) stored in a discrete rectangular grid,
each image (including letter characters) is represented
by a series of these elements. As for the vector fonts,
the form of the letter character (defined by the outline)
is filled with pixels of the monitor or raster printer dots.

Figure 1. Schematic representation of the outline font
(left) and the bitmap font (right)

Output devices must convert the outline record of the
letter characters into the bitmap in some way. A sepa-
rate program, rasterizer, is in charge of that. Its task is
to calculate, using the coordinates of the outline, where
on the discrete grid of pixels the outline will be set and
which pixels will be included, in order to obtain as
faithful representation of the letter characters as pos-
sible. Since this grid is defined by the integer pixel val-
ues, with each change in the size of letter characters,
the real coordinates of the outline need to be rounded
up to integer values. This process is called grid fitting.

For example, if a dot on the outline has the coordinates
80 and 115, during the reduction of the letter sign 6
times, these coordinates change value to 13.3333 and
19.1666. After rounding to integers, the coordinates
will be 13 and 19 with errors 0.3333 and 0.1666. This
error increases proportionally with the reduction of the
outline.

In order to minimize errors while reducing the size of
letter characters, font rasterizers use special algorithms

that correct the scaled outline in order to get better re-
sults on devices with low and medium resolution. To
enable this, the algorithms use the instructions built in
within the font during design. These instructions are
called hints (indications) or hint mechanisms. They
define the most important parts of the letter character,
such as the thickness of strokes, the position of the key
elements of the letter character, the proportion of letter
character, as well as the set of rules for modifying the
outline.

For a high-quality font that looks good when displayed
on the output device screen, even in smaller sizes, in
addition to having the well-defined outlines, it is also
necessary that the hint mechanisms are properly allo-
cated. This process of defining hints is called hinting.

Hint mechanisms

Font formats can generally be divided into two groups:
Type1 and TrueType. Type1 font format (also known as
the PostScript font) has been developed by the Adobe
company and was popular in the publishing industry.
This format was developed primarily for applications
related to prepress and their final aplication is the use
on the printed material.

TrueType format, developed by the Apple company,
is primarily intended to equalize the representation
of characters on screen and paper, putting the empha-
sis on the screen display. The outlines which describe
the characters within the font are not sufficient for a
clear view on the high and low resolution output de-
vices such as printers with the resolution of 300dpi and
screens with the resolution of 72 dpi or 96 dpi.

It was necessary to develop techniques for better place-
ment of the outline record and its rasterization within
the network of pixels. These techniques have included
additional information in the form of rules which de-
termined how certain parts of letter characters would
be displayed. These rules, called hints, refer to the
specific outline and the dots it consists of, defining the
width of certain parts of the letter characters, such as
base strokes, junctions, serifs, terminals, but also the
distance between these parts. The main role of the hints
would be to maintain the original characteristics of the
letter character, during its scaling and display on the
raster network of the output device.

Although both formats contain outlines described with
Bézier curves (Type1 with cubic Bézier curves, and
TrueType with quadratic Bézier curves), their hinting
styles are radically different.

Faculty of Technical Sciences - Graphic Engineering and Design

25

Type1 Hint mechanisms

Hinting Type1 fonts works as follows: the instructions
in the form of restrictions are defined, and they control
the basic features of the character (the thickness of the
horizontal and vertical strokes, serif, terminals, etc.).
Rasterizer fills the outline with the pixels of the grid,
using the instructions in rather restricted way. Hints
defined for Type1 fonts have quite limited control of
the letter character rasterization, because the designer
can control only the position and thickness of the letter
character, with no direct impact on individual pixels.

Figure 2. Schematic representation of the Type1 hints
of the letter “B” (left) and the display of Type1 hints

in the FontLab (right)

Also, the defined instructions for a certain size of the
letter character affects the other sizes, so it is not pos-
sible to control the rasterization of the letter character
for only one size. Hinting Type1 fonts includes a lot of
compromising on what the quality of the letter charac-
ter is desirable and on what sizes this quality needs to
be preserved.

Given their inflexibility and limited manipulation of
pixels, Type1 hint mechanisms are not used for the
fonts to be displayed on the screen, because due to the
lower screen resolution, they require more precise con-
trol over the pixels.

TrueType fonts and their hint mechanisms allow for a
much more precise control over the pixels.

TrueType Hint mechanisms

Rasterizing TrueType fonts

As noted earlier, the TrueType font contains charac-
ters that are described by the outline, namely, by the
quadratic Bézier curve. Location of the dots that define
the outline are described in Font Units (FUnit). It is the
smallest unit of EM square. Em square is an imaginary
square which can fit a capital letter M with its descend-
ers and ascenders. The letter character is placed in this
square, and the number of FUnits that take up the verti-
cal side of the Em square is defined by the UPM (Units
per Em) value. For the TrueType fonts, this value is
2048 UPM. The grid, Em square is composed of, is
two-dimensional, and the coordinates x and y define
the movement in horizontal and vertical directions, re-
spectively. One unit of this coordinate system is equal
to one FUnit. Each dot in this coordinate system has an
integer value.

When scaling, outline stored in the font file is scaled to
the requested size. The positions of the dots that make
up the outline are no longer described in FUnits, but
their coordinates are assigned value in pixels of the out-
put device. After scaling, certain instructions (hints) de-
fined in the font file are performed. This process is also
referred to as grid-fitting, and as a result it has adapta-
tion of the original outline to the given pixel grid of the
output device, in order to better maintain the original
shape of the outline. Grid-fitting is followed by Scan
Conversion which is to determine which pixels will be
visible on a given output device, and which not.
Before being displayed on the output device, the char-
acter, or rather the position of dots that form its outline,
must be translated into the coordinate system of the
output device. The positions of dots, expressed in units
independent of the units of the output device, must be
converted to absolute units of a particular output de-
vice, and when it comes to screen, the unit is pixel.

Figure 3. Scan-conversion of
the outline. The coloured pix-
els are the ones that are cov-
ered by the outline in more
than 50%, i.e. the ones whose
center enters the space framed
by the character letter outline

Journal of Graphic Engineering and Design, Volume 3 (1), 2012.

26

Convertion of the relative units of the Em square into
absolute units of the output device (pixels) is performed
by the following equation:

pointSize * resolution / (72 points per inch * units_
per_em)

where pointSize represents the displayed size of the let-
ter character on the output device, resolution means the
resolution of the output device, 72 point per inch is the
number of dots per inch.

For example, the height of a letter character is 500 FU-
nits on the 72 dpi screen, at the size of 12 pt. UPM
value is 2048. The size of this letter character in pixels
will be:

500*12*72/(72*2048)=2,93

The resolution of any output device, is expressed in the
number of dots or pixels per inch (dpi). Resolution on
the Windows platform is 96 dpi, the Macintosh plat-
form 72 dpi, and in most laser printers 300 dpi.

The display of a letter character on a specific device
is expressed in pixels per em (ppem). The formula for
determining the resolution of the letter character on a
particular output device is as follows:

Ppem=pointSize*dpi/72

Where the point size is character size in points, defined
by a particular application of the output device, and dpi
is the resolution of the output device. So for the size of
12pt on the Windows platform ppem value will be:

Ppem=12pt*96dpi/72dpi=16ppem

At resolutions of 72 dpi, ppem value will always be the
same as the value in points.

TrueType instructions (hints)

TrueType programming language, in addition to the
description of the outline, also contains a collection
of instructions intended to define the ways in which
the outlines are to be adjusted to the pixel grid during
rasterization on a specific output device. These instruc-
tions are called hints.
TreuType hints directly control the shifting of points
and the transformation of their coordinates values from
the relative coordinate system of the Em square to the
absolute coordinate system of the output device. Hint-
ing programs are written in a special programming
language, which makes them very flexible, but also
complex for direct programming. A set of higher pro-

gramming languages is usually used for defining hints,
and it is possible to get satisfactory results with mini-
mal knowledge of the coding.

Figure 4. Schematic representation of the TrueType
hints of the letters “B” (left) and the display of the

TrueType hints in FontLab (right)

Hint mechanisms of the TrueType font file are defined
by three types of programs (instruction).

The first is the so-called global program (Font program)
- for all fonts and in all PPM sizes; the second is also
a global program (PPM program) - for one glyph at all
PPM values; and the third is local, or glyph (delta) pro-
gram - which defines a glyph at a specific size of PPM.

Global program (Font program)

Font Program includes two operations over all the let-
ters at all values of PPM.

The first operation is to determine the aligment zones.
They define the area (zone) in which are all the charac-
ters which have overshoots, through some of the main
vertical font metrics (cap-height, x height, baseline, as-
cender and descender). This is the case with rounded
characters such as “o” which due to the visual compen-
sation exceeds the x-height in order to appear roughly
the same height as the letter “x”. However, in smaller
sizes and at lower resolutions, the visual compensation
of only few pixels can reach 50% or 100% of the let-
ter character height, so under these circumstances it is
necessary to suppress the compensation and bring these
letter characters to the height of the other letter char-
acters.

(1)

(2)

(3)

(4)

Faculty of Technical Sciences - Graphic Engineering and Design

27

The second procedure is to define the standard stem
widths. This is important because while adaptation of
the outline to the pixel grid (especially at small sizes
and resolutions), there may be inconsistencies in the
width of the strokes. Thus, two strokes of the same
width can have different values at some sizes . This
is especially conspicuous with the characters “n” and
“m”, where it is expected that all vertical strokes, on
small sizes also, remain the same.

Figure 5. Alignment Zones (left) and standard stems
widths (right)

Global program (PPM program)

This program contains several commands, and when
applying these, it has an effect on the appearance of
a letter character at all PPM values. These commands
include:

Align - Aligns (moves) the position of the outline point
to the designated position on the grid or to the edge of
the alignment zone.

Single Link - Sets the position of the point relative to
the position of another point. Distance can be linked
with one of the stem widths. Distances also may be
rounded or not.

Double Link - Sets the distance between two points to
an integer value that may be linked with a stem width
Interpolate Interpolates the position of a point between
two other points

Interpolation –
points, and sets the relations among them.

Local, glif program (delta program)

delta instructions
positions of pixels, so the result is turning on/off only
certain pixels. These instructions include Middle Delta
and Delta Final commands.

In FontLab Studio or in Microsoft Visual TrueType
(VTT) tool we use a small set of high-level hinting in-
structions that are automatically compiled to TrueType
instructions during font export. Because these instruc-
tions can be set and edited visually we call them vi-
sual TrueType hints or just visual hints. Visual hints are

situations and they are compiled in very compact and
effective TrueType instruction code (FontLab, 2006).

-
eType instructions and at the end produce a well de-
signed font, without detailed knowledge of the Tru-
eType programming language.

Approaches to Automatic Hinting

The process of writing TrueType instructions is a very
time consuming process, especially when its about
family of 10 fonts for example. That will be about 2500
characters. Each has its own hinting program.

Mitigating factor in the manual mode of entering the

hint, called Visual TrueType. Using these tools, Tru-
eType code is generated, which can afterwards be ed-

Given the amount of work behind the manual hinting of
fonts, automatic generation of the hints is a good start-

characters.

been some research with the aim to develop own tools
for hinting or presentation of certain models and algo-
rithms of solving the problem of font rasterization.

One of the presented approaches describes the auto-
matic recognition and describing the characteristics of
letter characters of a font, comparing it with the pre-

(Hersch and Claude, 1991).

Journal of Graphic Engineering and Design, Volume 3 (1), 2012.

28

In this paper, the authors explain the approach where
they define the base consisting of all the alphanumeric
characters of Latin alphabet. These characters are hand
drawn and constructed with the most optimal number
of points necessary for making the outline. Hints are
also defined in these models.

The point is that the points that define the character of
the input font are compared to points of the outline of
the same character of the model font. The points be-
ing compared must have an approximately the same
position, or they are eliminated during the calculation.
When all the points are compared, the result is descrip-
tion of the outline of the input character in the form of
metadata.

Figure 6. Comparison of the outline points on a pre-
defined model and the outline points of the font being

described

This description of the input font can later be used for
hinting, when the hints of a predefined model are trans-
ferred to the input font, after they have been adapted

to the compared and described outline. This approach
is applicable only to the serif and sans-serif fonts,
with simpler appearance and no needless ornaments.
Comparing 70 different fonts to their model, the suc-
cess rate of outline recognition was 99%. In the 1%
the program reported that there were no characters that
match the model. The error occurred with fonts which
have slightly rounded vertical, horizontal and diagonal
strokes (Optima, Palatino, Zapf Book).

Slightly more advanced approach is described in u
(Zongker et al., 2000). This approach is also based on
comparison of models with the font that needs hinting.
Only here, unlike in (Hersch and Claude, 1991), in-
stead of the hand-drawn model, professionally hinted
TrueType font is used. First are compared the points on
the outline of the model font and the target font in order
to find similarities between the two outlines, i.e. to find
matching pairs between them.

Figure 7. Comparison and matching the points of the
font outline in a template and the font for which the
description and automatic hinting needs to be set

Then the CVT table of the model font is used (which
contains descriptions of characteristic points), it is
copied and adjusted to the target font, and the changed
names and the value of positions of points are entered.

Figure 8. Scan-conversion of the outline. The coloured pixels are the ones that are covered by the outline in more
than 50%, i.e. the ones whose center enters the space framed by the character letter outline

Faculty of Technical Sciences - Graphic Engineering and Design

29

This being done, the appropriate hints can be copied
from the model font to the target font, with the adjusted
values of the points, of course.

Unlike the previous one, this approach is more auto-
mated and requires less time, because we do not need to
make models, but use ready-made professionaly hinted
fonts as templates. This approach was tested between
the fonts of the same family (Sylfaen Sans Bold from
Sylfaen Sans, Georgia from Georgia Bold, and Bold
Italic Georgia Italic from Georgia), but also between
different families of fonts (Bodoni, Calisto, Perpetua
and Revival - from Georgia). Better performance was
achieved when comparing fonts from the same family.

Based on the experience derived from previous stud-
ies of methods for automatic hinting and the perceived
shortcomings of these methods, another approach for
automatic font hinting is presented. This approach, in
contrast to previous ones, is completely automated and
it is based on identifying the parts of letter characters
that need hints to be defined. This involves collecting
global information on the font which is further asso-
ciated with characters, defining a set of constraints,
sorting according to relevance and conversion into a
known hint programming language (PostScript, Tru-
eType, VTT Talk, and others) (Shamir, 2000).

Namely, each hinting technique can be divided into the
following segments (Shamir, 2000):

Identification of hinting situations - recognizing the
characteristic features that need to be preserved in ev-
ery of letter character when setting the outlines on the
raster grid (during gridfitting)

Handling of global sizes - determining the value of
global sizes , such as character height, the height of ver-
tical and horizontal strokes. This can be defined by the
designer or by measuring and studying every character
and collecting the information obtained. The global size
serve to allow linking with the local hinting situation.
Prioritetizing - while defining hints, it can occur that
an instruction can not be executed until another one has
been defined, or that the existence of one instruction
negates the existence of another, so it is necessary to set
the logical sequence of instructions.

Translating - if some of the previous operations have
been defined by a different programming language,
they need to be translated into a low-level language of
the specific technology (TrueType, PostScript, etc.).

Unlike the previous approaches (Zongker et al., 2000)
and (Hersch and Claude, 1991), which were semi-
automatic, and applicable only to the Roman fonts
(and if the topology, i.e. the shape, of the model letter

character coincided with compared font), this model is
fully automated and is applicable to all forms of letters
(Asian, Hindu, ...).

Figure 9. The result of automatic hinting using Con-
straint Based Approach for the fonts Courier (above)
and Times-Roman (below). What is noticeable is the
transition between 28 and 29pt in the example above
and between 13 and 14pt in the example below. This
is a much better solution than the one where these

differences are apparent between the characters of the
same size

In short, this approach involves the extraction of cer-
tain characteristic parts of the letter character (strokes,
serifs, junctions, curves, white,etc.), their analysis and
definition of the characteristic points and their limits,
then, the comparison and collection of these data for
each character, and eventually, linking this data with
the global sizes, defining hints and their conversion into
a known hint language.

Conclusion

The advantage of the automatic hinting is significantly
reduced time of hinting. In the manual process, a pro-
fessional typographer needs about 20-40 hours to de-
fine hints for the font of 256 characters (Zongker et
al.,2000). However, if we want high-quality results in
the display on output device screen, in addition to auto-
matic, it is necessary to also use the manual method of
hinting. In order to achieve this, it is of course neces-
sary to be familiar with the processes described above,
but also with the opportunities that modern software
tools offer. So as not to make the typo designers go fur-
ther into programming in the low-level programming
language (TrueType), there is the option to visually de-
fine the hint through some high-level languages , such
as VisualTrueType (VTT), by relating and limiting the
outline.
In a program such as FontLab Studio, these high-level
commands are available and it is allowed to graphically

Journal of Graphic Engineering and Design, Volume 3 (1), 2012.

30

define hint using the appropriate tools. In this way, it is
generated a code that is compiled in the font file and
that can later be modified through the programming in-
terface. TrueType language allows us to manually make
correction of automatic hinting, using the option such
as dropout control, which prevents the discontinuation
of the outline when viewed at small sizes. In addition to
this option, the TrueType also allows us to manipulate
specific pixels of the letter character, but at specific size
, which gives us greater control over the rasterization.
This is possible through the use of Delta hints.

All these techniques (automated and manual) merged
with the knowledge of anatomy of the letter and the
basis of digital typography, are requirement for a well-
designed font, which will be suitable for display on
screens of different devices such as portable Tablet
PCs, mobile phones, electronic book readers etc.

In this paper is shown some of the fundamental resear-
hes in the field of automatic hinting. Understanding of
these fundamentals is a starting point in advance re-
search of how automatic hinting can be perfected so
the end results will be close up, or equal to professional
manual-hinted font.

Further research can go in the direction of getting ac-
quainted with the ways in which various portable de-
vices perform rasterization of fonts, which technology
is used, what are their options and what hinting tech-
niques work best on them.

References

1. Anon. TrueType Typography. TrueType Hinting.
[Online] Available from: http://www.truetype-
typography.com/tthints.htm [Accessed 29th June
2012].

2. FontLab Ltd. (2006) FontLab Studio 5 User
Manual for Windows. [Online] Available from:
http://www.fontlab.com/font-editor/fontlab-
studio/download-fontlab-studio/ [Accessed 30th
March 2012].

3. Hembert van J.. Practical TrueType hinting.
[Online] Available from: http://luc.devroye.org/
tt_hinting_tutorial.pdf [Accessed 28th June 2012].

4. Hersch R.D., Claude B. (1991) (1991) Model-
based Matching and Hinting of Fonts. ACM
SIGGRAPH Computer Graphics. [Online] 25 (4),
71-80 Available from: http://dl.acm.org/citation.
cfm?id=122726&CFID=93842326&CFTOK
EN=66875597 [Accessed 1st April 2012].

5. Hersch R.D. (1993) Font Rasterization: the State
of the Art. In: Roger D. Hersch (eds.) Visual and
Technical Aspects of Type. England, Cambridge
University Press, 78-109

6. Microsoft Corporation. (1997) TrueType
fundamentals. [Online] Available from:
http://www.microsoft.com/typography/otspec/
TTCH01.htm [Accessed 28th March 2012].

7. Shamir, A. (2003) Constraint Based Approach for
Automatic Hinting of Digital Typefaces. ACM
Transactions on Graphics (TOG). [Online] 22
(2), 131-151. Available from: http://dl.acm.org/
citation.cfm?id=636887 [Accessed 4th April
2012].

8. Zonker D.E., Wade G., Salesin D.H. (2000)
Example-Based Hinting of TrueType Fonts.
SIGGRAPH ‘00 Proceedings of the 27th annual
conference on Computer graphics and interactive
techniques. [Online], 411-416 Available from:
http://dl.acm.org/citation.cfm?id=344779.34496
9&coll=DL&dl=GUIDE&CFID=93842326&CF
TOKEN=66875597&preflayout=tabs [Accessed
22nd of April 2012].

