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Introduction 

Image segmentation algorithms are widely used in 
various fields including optical character recognition, 
machine vision systems, infrared gait recognition, au-
tomatic target recognition and medical image applica-
tions (Zhang and Wu, 2011). There are many segmen-
tation methods present, but every algorithm has its 
strengths and weaknesses. Previous research show their 
detailed evaluation using objective parameters (Sezgin 
and Sankur, 2004), (Chang et al., 2006) and (Zhang et 
al., 2008). One of the main scope of image process-
ing is the field of defect detection. The use of a certain 
algorithm is based mainly on the type and characteris-

tics of the examined product or process and there is no 
universal solution. There are many parameters which 
influence the choice of the used algorithms, for exam-
ple the expected colours, the complexity of the texture, 
lighting conditions, the shape or type of failure or its 
differentiability, etc. (Ng, 2006; Park et al., 2009). 

Folding process of the coated papers often causes 
cracking of the coating layer on the outer side of the 
folding line (Barbier, 2004). This effect is even more 
emphasized when fold is made on printed area (surface 
covered with printing ink). Many factors which influ-
ence the crack size in the surface during the folding 
process are related to the paper manufacturing, to the 
printing and the converting processes. Even though this 
phenomenon cannot be completely avoided, the visible 
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destructions of the products can be diminished with 
more precise folding machine settings (Eklund et al., 
2002; Gidlöf et al., 2004; Anon., 2006). Since the on-
line examination of folding quality is still not automat-
ed, the derived quality estimation is highly dependent 
of the examiners experience, fatigue and other subjec-
tive influences. The introduction of an automated and 
objective evaluation based on image processing would 
probably result in a significant quality improvement 
and enable process standardization. The objective fold-
ing quality assessment algorithm (OFQA) introduced 
by (Apro et al., 2009) showed promising results. Since 
most of the measures (model objective variable or 
MOV) of the proposed algorithm depend on the seg-
mentation quality, detailed evaluation and refinement 
were performed. 

The evaluation, which incorporated 24 different im-
age segmentation algorithms, presented in (Apro et 
al., 2011), showed that the entropy based algorithms 
(Maximum and Renyi Entropy algorithms) are the best 
suited for evaluation of online folding quality assess-
ment. As analysed algorithms are expected to work in 
a wide range of samples autonomously without any 
human interaction the most important requirement put 
upon them was automation of their operation. In order 
to test the algorithms under the same conditions evalu-
ation of the algorithms was made examining only the 
single threshold case. However, the selected (Maxi-
mum Entropy) algorithm (among others) is capable of 
multi-thresholding, which could be useful in the fold-
ing quality assessment. Namely, the images of folded 
substrates are potentially three-colour images: the co-
lour of the print, the colour of base paper and the colour 
of “shadow” (or under-illuminated regions). The aim of 
this paper is to compare the performance of single (bi-
level) and multi (2 thresholds) thresholding approaches 
using the Maximum Entropy algorithm over a given set 
of images.

Methods and materials

Thresholding is an important technique for image seg-
mentation that tries to identify and extract the object 
of interest from its background based on the grey-level 
distribution or texture in image areas. One of the most 
efficient techniques for image thresholding is based 
on entropy distribution of the grey-levels in an image 
(Liao et al., 2001).  

The previous investigation of the authors resulted in 
selection of Maximum Entropy thresholding as the 
best performing over the selected set of images. The 
Maximum Entropy thresholding method (in the form 
that has been used in this paper), has been proposed 

by Kapur, Sahoo and Wong and in the literature it is 
mostly named after its authors (e.g. Liao et al., 2001; 
Yin, 2002; de Albuquerque et al., 2004; Chang et al., 
2006; Zhang et al., 2008; Xiao et al., 2008). 

The Maximum Entropy is an automatic threshold-
ing method where the optimal threshold value can be 
found by maximizing the entropy of the resulting class-
es (foreground and background) (Chang et al., 2006). 
This thresholding technique is classified as bi-level ap-
proach, where a unique threshold value is obtained. The 
bi-level segmentation techniques give satisfactory re-
sults on the images with clear foreground-background 
differentiation, but for the segmentation of complex 
images a multi-thresholding approach could be more 
suitable. A multi-thresholding technique converts the 
different types of regions of the image into regions hav-
ing the optimal number of grey-level (Strouthopoulos 
and Papamarkos, 2000; Tabbone and Wendling, 2003). 
The Maximum Entropy approach is one of the most im-
portant threshold selection methods but lacks in terms 
of execution time when the Maximum Entropy crite-
rion is applied to multi-level threshold selection (Luo 
and Tian, 2000).

The concept of entropy has been widely used in data 
compression to measure information content of a 
source, using the uncertainty as a measure to describe 
the information contained in a source. In image analy-
sis, the entropy-based thresholding considers an image 
as an information source with a probability vector de-
scribed by its grey-level image histogram (Chang et al., 
2006; Barbieri et al., 2011).

Suppose that h(i) is a value in a normalized histogram. 
Typically i takes integer values from 0 to 255 (for 8-bit 
depth images). It is assumed that h(i) is normalized, 
that is (Jarek, 2004):
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The entropy of white pixels is defined as (Jarek, 2004):
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The optimal threshold can be selected by maximizing 
the sum of foreground and background entropies as 
(Jarek, 2004):   
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The previous formula for optimal threshold value can 
be extended to multi-level thresholding of an image. 
Assuming that there are n thresholds dividing the origi-
nal image into n+1 classes, the optimal thresholds {T1, 
T2, …, Tn} are chosen by maximizing the sum of entro-
pies as follows (Jarek, 2004):
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ImageJ software was used for the segmentation pro-
cess. This software has been chosen as it is widely 
used, well-supported and free of charge. The bi- and 
multi-level entropy thresholding algorithms named as 
“MaxEntropy” (implemented by Jarek S.) and “Multi-
MaxEntropy” (implemented by K. G. Baler, G. Landini 
and W. Rasband) can be found at (ImageJ, 2011).

Since, there are three grey-levels expected correspond-
ing to the three-colour surfaces on the test images (the 
colour of the print, the colour of base paper and the co-
lour of “shadow”), the Multi-Maximum Entropy algo-
rithm was configured to search for two thresholds. As 
the foreground objects (surface damages) the lightest 
class was used, the remaining two classes were treated 
as background. In this way, the results obtained by the 
two used algorithms (Maximum Entropy and Multi-
Maximum Entropy with single and multi-thresholds, 
respectively) can be compared. 

Test images 

Test images for the thresholding evaluation process 
were selected as a subset from a large image library 
prepared for the needs of the OFQA algorithm devel-
opment (Apro et al., 2009). A test form was devel-
oped based on the experimental test form presented in 
(Eklund et al., 2002) and (Gidlöf et al., 2004). The test 
form included test fields for printing quality assurance 
and for the folding behaviour (surface damage) evalu-
ation. Using the CMYK notation the regions for fold-
ing behaviour analysis and visual inspection were as 
follows:  C50% (latter on referred as R1), K50% (R2),  
K100% (R3), C40% + M40% + Y50% + K20% (R4), 
C80% + M80% + Y80% + K80% (R5). 

The samples were made of uncoated, glossy- and 
matte-coated paper (FEDRIGONI) with basic weight 
of 100 g/m², 140/150 g/m² and 170 g/m², respective-
ly. The printing was performed by KBA Performa 74 
offset machine using process colours (Sun Chemical) 
while the folding was performed by the Horizon AF-
C546AKT folding machine. The folding process was 
made using one buckle folding unit with standard fold 
rollers (combination of soft polyurethane foam rubber 
and steel roller) and roller gap adjustment. 50 samples 
of each paper grade were folded in machine and cross 
direction of paper grain at temperature of 22 ºC and 
relative humidity of 55% 48 hours after printing. The 
prepared (folded and gathered) samples have all been 
digitalised three times using different digitalisation 
techniques: commercial digital camera, flatbed scanner 
and digital microscope. Technical parameters and ad-
justments for used equipment are presented in Table 1. 

Twelve images were chosen from the base set of test 
images covering all three digitalisation methods and 
four different surface textures (R1 to R4). Region R5 
was excluded from the evaluation process, since it has 
been used to analyze the folding behaviour at total ink 
coverage of 320% and its visual appearance was very 
similar to region R3. All selected test images were of 
substrates with surface damages. To present the perfect 
folds without surface damages three more images (one 

Table 1. Technical parameters and adjustments for used digitalisation equipment
Used equipment Canon A520 CanoScan 5600F Veho VMS-001
Type Commercial digital camera Flatbed scanner USB digital microscope
Colour mode RGB RGB RGB
Embedded colour profile sRGB sRGB -
Resolution resolution 180 ppi resolution 1200 ppi resolution 300 ppi
Bit depth 8 8 8
Format JPEG BMP BMP

Other
no flash, 100% digital 
zoom, auto white balance
focal length of 5,8 mm

-
no light source, mag-
nification of 200X, 
CMOS sensor
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for each digitalisation methods) were added to the eval-
uation subset in order to proof the over detection rate 
of the segmentation. The halftone and rosette pattern of 
printed surfaces, damaged or not, present a particular 
challenge for automated image segmentation, since the 
unprinted areas of pattern structures look very similar 
to cracked surfaces of paper. Samples of halftone and 
rosette pattern with and without surface damages are 
shown in Figure 1a-b and Figure 2a-b, respectively. 

a)  

b) 

Figure 1. Test images for halftone pattern of 50% cyan 
with (a) and without (b) surface damages

a)   

b) 

Figure 2. Test images for rosette pattern with (a) and 
without (b) surface damages

Since, the algorithm works with grey-scale images, the 
original sample images were transformed from source 
RGB colour space to CIE xyY colour space which 
lightness channel (Y) was used as the grey-scale rep-
resentation. Test images were pre-filtered with Mean 
filter (using a 3x3 square kernel) in order to reduce the 
influence of noise and complex patterns (halftone and 
rosette) on the segmentation results.

Objective measures

To evaluate the segmentation performance of the two 
variants of Maximum Entropy, four performance mea-
sures have been used: misclassification error, modified 
Hausdorff distance, positive-negative false detection 
ratio and relative foreground area error. All these mea-
sures require a referent or ground truth image, which 
is derived by hand segmenting every sample image, 
marking just the cracked surfaces as foreground objects 
(see Figure 3a and b for an example of test image and 
its ground truth pair).
  

a)   

b) 
Figure 3. Example of  test image and its ground truth 

pair

The proposed measures were chosen in order to opti-
mise the following criterion: automated segmentation 
results should match the ground truth image as close as 
possible, preferably 100%, but if there are some mis-
matches, the misclassified pixels should be as close as 
possible to the desired foreground object. Since some 
measures of the OFQA are using the ratio of foreground 
and background pixels, it is also preferable to have bal-
anced number of false positive and false negative de-
tections, which would lead to good estimation of the 
real value.

Misclassification error (ME) reflects the percentage 
of background pixels wrongly assigned to foreground, 
and vice versa. For the two class segmentation problem, 
ME can be expressed as (Sezgin and Sankur, 2004):

,1

OFOB

TFOFTBOB
M 

+

∩+∩
−=  E  (7)

where BO and FO denote the background and fore-
ground of the ground truth image, BT and FT denote the 
background and foreground areas of the tested image, 
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and is the cardinality of the set. ME varies from 0 for 
a perfectly classified image to 1 for a total mismatch 
between referent and tested image (Sezgin and Sankur, 
2004).

The Hausdorff distance can be used to assess the shape 
similarity of the thresholded regions to the ground truth 
shapes. Since the maximum distance is sensitive to out-
liers, shape distortion can be measured via the average 
of the Modified Hausdorff distances (MHD) over all 
objects, which is defined as (Sezgin and Sankur, 2004):
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where d(fO, FT) denotes the minimal Euclidean distance 
of a pixel in the thresholded image from any pixel in 
the ground-truth image, |FO| is the number of fore-
ground pixels in the ground-truth image (Sezgin and 
Sankur, 2004). Since an upper bound for the Hausdorff 
distance cannot be established, the MHD metric is hard 
to normalize to the interval [0, 1]. (Sezgin and Sankur, 
2004) divided the derived MHD measures by the maxi-
mal value of MHD for the given test image set, but this 
method gives a relative result, which is sensitive to the 
choice of the image set. Namely, if the original set is 
extended with an image, which has a large MHD, this 
would result in “improvement” in the rest of the pic-
tures for this measure. For this reason a new normal-
ization was proposed in this research. If only the mis-
classified pixels are used for computing the MHD, its 
minimum value is 1, while the maximum is not deter-
minable. Converting this value range to values between 
0 and 1 can be performed by computing the reciprocate 
value. However, this would convert the best possible 
value to 1 (1/1) and the worst value ≈ 0 (1/high value). 
To keep the same notation (0 for best, 1 for the worst 
performance), this could be inversed by the following 
formula:







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MHD
NMHD 11  (9)

However, this formula has a rather steep slope (e.g. for 
an MHD of 2, which is very close to the best perfor-
mance, would result in 0.5 which is a considerable dis-
tance to 0), thus the following modification was used:
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The measure derived by this formula does not depend 
on the set of images and has a more general meaning.

The positive-negative false detection ratio (PNFDR) 
is an auxiliary measure to make the evenness of false 
detection values (positive and negative) easy to read. It 
is defined as:


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where:  positive false detection (PFD) is the proportion 
of background pixels wrongly assigned to the 
foreground object. Normalization can be done 
using the number of foreground pixels or the 
overall number of pixels in the ground-truth 
image. In this paper, normalization was done 
using the number of foreground pixels;

negative false detection (NFD) is the propor-
tion of foreground pixels wrongly assigned to 
the background. Normalization was performed 
in the same manner as for the PFD.

The PNFDR measure has a minimum in 1, which is 
also its optimum, desired value. However, the maxi-
mum value cannot be analytically determined, which 
means that normalization is not strait forward, there-
fore a similar method is proposed as for the normaliza-
tion of MHD, that is:







−=

PNFDR
NFDR 11  (12)

Relative foreground area error (RAE) is first proposed 
by (Sezgin and Sankur, 2004). It is a comparison of 
object properties, more specifically the area of the de-
tected and expected foreground. It is defined by the fol-
lowing equation:



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 ,
 

0

0
0

0
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where A0 is the area of reference image and AT is the 
area of the thresholded image. For a perfect match RAE 
is 0, while if there is zero overlap of the object areas the 
RAE is 1.
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To obtain a single, joint performance score from the pre-
viously listed criteria the arithmetic averaging of four 
measures has been considered. The normalized scores 
obtained from the ME, NMHD, NFDR, and RAE crite-
ria were used, while the PFD and the NFD were omit-
ted since their information is contained in their ratio 
measure (NFDR). The attempt to derive a combined 
measure was presented by (Sezgin and Sankur, 2004) 
with the clear attempt to simplify segmentation quality 
evaluation. However, since the measures are not fully 
independent, share some portion of the information 
and their sensitivity (slope of the function) is different, 
simple arithmetic averaging might not give the best ap-
proximate of the overall quality measure. Therefore, 
the evaluation of tested algorithms was made by using 
only the ME as a representative measure and by using 
the joint measure. The two evaluation results were then 
compared.

Results and discussion

The evaluation of the results was done separately for 
the ME measure and the combined measure. The ME 
measure is the most descriptive, it shows the percent-
age of misclassified pixels, hence is a quantitative 
description of the error, while the other measures are 
more qualitative. The combined measure recapitulates 
the presented four measures into a single one. 

The results are presented and analyzed in two different 
groups: first group includes images with surface dam-
age, second group, the images showing a perfect fold. 

This separation is made because in the second group 
most of the measures were not defined, since there is 
no foreground object on the ground truth images. For 
this group, only results of the ME measure are shown.

The obtained results of ME calculated on test samples 
showing damaged surface are presented in Figure 4. 
According to the ME, as a standalone measure, it can 
be seen that Multi-Maximum Entropy has a balanced 
performance over the whole set of test images with 
maximum ME value of 0.2. On the other hand, the 
Maximum Entropy had lower ME values for 9 images. 
The other 3 images had significantly higher ME values 
than with Multi-Maximum Entropy.  

Comparing the performance of segmentation tech-
niques for different digitalisation methods one could 
see large differences between values obtained using 
Maximum Entropy to the values obtained using Multi-
Maximum Entropy at images of region R4 taken with 
commercial camera and scanned. Images taken by digi-
tal microscope, were well segmented with both algo-
rithms resulting with similar values of ME.

In addition, images of cyan printed substrates (1_mic, 
4_scan and 4_cam) were poorly segmented using only 
one threshold. This could be explained by the relatively 
small difference in luminance levels of cyan and pa-
per colours. By using two thresholds, these fine dif-
ferences could be more distinguished. It could be no-
ticed that Multi-Maximum Entropy is more successful 
in segmenting images where the luminance values of 
printed substrate colour and paper colour are harder 

Figure 4. Values of ME for every test images with surface damages 
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to distinguish (1_mic, 4_scan and 4_cam). However, 
it should also be mentioned that Multi-Maximum En-
tropy is more prone to under-detecting (false negative 
detections) the damages, but there is almost no positive 
false detection. This feature of the algorithm could be 
well exploited in a two-staged segmentation approach 
(where the Multi-Maximum Entropy would be used as 
the first step to mark damage pixels).

In Figure 4 can also be seen that all the digitalisation 
methods are showing similar results, which lead to the 
conclusion that substrate inspection can be conducted 
online in production where optimal illumination is hard 
to achieve.

Based on the combined measure, the Maximum Entro-
py showed better performance than Multi-Maximum 

Figure 5. Values of combined measure for every test images with surface damages

Figure 6. The average values of all objective measures by image groups 
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Entropy for most of the test images (Figure 5), hence 
the Maximum Entropy can be considered as a better 
choice. However, this is opposite to the suitability eval-
uation of investigated algorithms based on ME values. 
Although, similar combined measure was successfully 
used in (Sezgin and Sankur, 2004) results of this in-
vestigation indicate that current form is not suitable 
for usage in algorithm evaluation. Nevertheless, the 
quantitative measures are also carrying useful informa-
tion, which should also be utilized, but using a more 
sophisticated equation. Figure 6 presents an overview 
of all measures averaged by image groups based on the 
digitalisation method.

The results for the second group of pictures (substrates 
without surface damages) are shown in Table 2. 

The Multi-Maximum Entropy had better segmenta-
tion results for all three investigated images of sec-
ond group, showing significant improvement on the 
scanned image. These results are even more important 
if we consider that these are images of perfect folds, 
where over-detection is critical. This makes the Multi-
Maximum Entropy better algorithm to use for detect-
ing damages on folded substrates. However one should 
have in mind that the Multi-Maximum Entropy has 
high computational demands, although this becomes 
critical when using for three or more thresholds (Luo 
and Tian, 2000), hence it does not apply to the case 
considered here as there are only two thresholds used.

Conclusions

This paper presents a detailed evaluation of two variants 
of Maximum Entropy image segmentation algorithm 
with the focus to their performance on segmenting a 
specific group of images. These images are showing 
different folded test specimens, which are inputs to an 
objective fold quality assessment algorithm. The algo-
rithm uses image segmentation to detect surface dam-
ages and hence the segmentation quality metrics are 
chosen accordingly. There were four different measures 
used for algorithm evaluation: misclassification error, 
modified Hausdorff distance, relative foreground area 
error, positive-negative false detection ratio. Attempt-
ing to combine the measures into a unique rating for 
algorithm evaluation, new normalization methods were 
proposed for some of the parameters. Two evaluations 
of the algorithms were performed, first based only on 

the ME measure and second based on the combined 
measure. The first evaluation showed better results 
for the multi-threshold Maximum Entropy algorithm, 
while the second gave a different result showing bet-
ter performance of single threshold Maximum Entropy. 
In order to resolve this confusion, detailed analysis 
of partial results was performed, which showed that 
Multi-Maximum Entropy algorithm is better suited for 
the folding analysis. Furthermore, the combined mea-
sure should be differently constructed in order to give 
unique and precise rating about algorithm performance. 
However, this is beyond the scope of this research and 
will be considered in further research.
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