
Faculty of Technical Sciences - Graphic Engineering and Design

31

Graphic Language Development

Postscript offers us only basic commands and proce-
dures to develop our own program language. The typi-
cal command system on basis of Postscript is the EPS
printout of images created in Photoshop, Indesign,
Freehand. Each of the listed programs developed its
own manner of creating the library of computer pro-
cedures. Computer graphic designers were free to cre-
ate all the values for describing image forms. Even the
simple elements such as squares must be programmed.
Each new routine is joined by new application instruc-
tions. The control command selects data from the stack
top. Such data should be positioned at certain locations

before their activation. A variable may use other vari-
ables as sub-actions. The order of taking data from the
stack top must be respected. Seldom used variables are
named with words that are of domestic expression.
Adobe Photoshop, Acrobat destiler, GSview or Ghost-
script programs are used for carrying out graphics that
are described with personal routines. The last program
listed can only display the graphics, but it has a unique
advantage. While it is being carried out, it gives in-
formation on the variables condition, their values and
possible reasons for unwanted algorithm derivation
stopping, i.e. the error diagnosis. Such display is not
possible with other programs. We suggest adopting the
routines that may be used in other programs, with the
development of new screen forms being our preroga-
tive goal.

Designing Raster Cells as the Basis for
Developing Personal Graphic Language

Abstract
Continuous work in creating new designer solutions points towards the need to create personal routines as personal
communication in the relation comprising design, algorithms, and original computer graphics. This paper shows
procedures for developing a control language for creating graphic designs with individual raster elements (screening
element obtaint by halftoning). Personal commands should set routines in a language understood by the printer and
the designer. The PostScript basis is used because we mix vector and pixel graphics in the same program stream, as
well as different colour systems, and our own raster forms. The printing raster is set with the target of special design
multi-use, and this includes the field of security graphics and art computer reproduction. Each raster form assumes
modifications, creating their raster family. The raster cell content is transformed with PostScript, allowing the setting
of basic values, angle and liniature for each pixel separately. Raster cells are mixed in multi-colour graphics to the
level of individual designs with variable values of parameters determining them.

Key Words: vector graphics, pixel graphics, personal computer routines, individual screening

Jana Z. Vujić1, Aleksandra Bernašek2, Tajana Koren2

1Polytechnic of Zagreb, Croatia
2Faculty of Graphic Arts, Zagreb, Croatia

Corresponding author: Jana Z. Vujic,
email: janazv@tvz.hr

Original scientific paper
UDK: 655.2

First received: 16.04.2011.
Accepted: 30.05.2011.

Journal of Graphic Engineering and Design, Volume 2 (1), 2011.

32

Personal Routines
Let us set the variables: Square shape. Raster form.
RGB and CMYK colours. Random number. Printout.
Font.
Further down are commands for the announced rou-
tines:
 (1)
%%BoundingBox: 0 0 800 1200
%%EndComments
%%EndProlog
(2)
/s { mark pstack pop } def
(3)
PostScript individual raster (screen) form relations:
 („Propeller“)
/propeler {dup 2 index 3 exp sub abs sqrt 3 1 roll 3
exp add abs sqrt exch sub abs 1 exch sub} bind def
 („Cut glass“)
/izrezanostaklo {dup 2 index dup dup mul mul mul
abs sqrt 3 1 roll dup dup mul mul mul abs sqrt
exch sub abs 1 exch sub} bind def
 („Coffee“)
/kava {dup 2 index 3 exp sub abs sqrt 3 1 roll 3 exp sub
abs sqrt exch sub abs 1 exch sub} bind def
(„Bat“)
/sismis {dup 2 index 3 exp abs sub abs sqrt 3 1 roll
3 exp abs add abs sqrt exch sub abs 1 exch sub}
bind def
 („Circle“)
/krug {dup mul exch dup mul add 1 exch sub} bind
def
 („Ellipse“)
/elipsa {0.8 mul dup mul exch 0.5 mul dup mul add
} bind def
For comparison reasons the round dot form has been
added found in the conventional programs for image
processing
(4) /RGB {r g b setrgbcolor} def
(5) /CMYK {c m y k setcmykcolor} def
(6) /HSB {h s b sethsbcolor} def
(7) /kvadrat {4 2 roll moveto exch dup 0 rlineto
exch 0 exch rlineto neg 0 rlineto closepath fill} def
(8) /font {/Times-Roman findfont 180 scalefont
setfont} def
(9) %%EOF

Explanation for the planned routines:
 (1)
The demonstrated commands are necessary in order
to be able to use PostScript databases in other applica-
tions. We set the working area size with the Bound-
ingBox command. In this proposal alignment to the
horizontal axis is 800 pixels, and 1200 pixels to the
vertical axis.

(2)
A short procedure named „s“ is shown for printout of
the stack condition and the text „mark“. A stack is the
storage from which we eliminate data in the opposite
order in respect to the order by which we had initially
stored it. The interpreter gives parameters and names
from the program that we had allotted ourselves, and
places them at the stack top, pushing further down the
previous values in the stack by one position under. The
„s“ procedure is suggested as the source of information
for values we doubt in while the program is developing.
(3)
Illustrations of the procedures named propeler, izre-
zanostaklo, kava and sismis are individual rasters.
The names have been given at random, whereas the
routines have been set by arithmetic operators. Indi-
vidualized raster elements have been researched by the
Mathematica program and later on they were translated
into PostScript.
Every setscreen command activating has two x and y
values at that moment when found at the stack top. Af-
ter the covering capacity estimate has been carried out,
those values disappear from the stack top. Variables x
and y appear several times in raster forms kava and sis-
mis and this is provided by commands roll and index.
(4)/(5)/(6)
The RGB system is defined by three parameters that are
assigned in interval 0.0 to 1.0, and this informs that the
coverage is 100%. The same interval applies to process
dyes in printing, the four-channel CMYK system. Con-
version between these two systems is carried out auto-
matically, at the moment when sent to print. The HSB
colour system is different because we have control with
the help of the following parameters: colour lightness,
colour tone and saturation. It is also set in the 0.0 to
1.0 interval. The transition from the RGB system into
the CMYK system is also on basis of typical academic
relations:

R = 1 – C;
G = 1 – M;
B = 1 – Y;
K = (C + M + Y) conventional separation defini-
tions

PostScript does not use any coloursetting and it is the
only program tool that enables separation independent
of the printing conditions. It is necessary to program
this transformation for each adaptation to the real co-
lourant and paper characteristics.
(7)
The routine by which a square is drawn is found un-
der the name kvadrat . The square, ordinarily a simple
geometrical form is defined in PostScript with a set
of commands. In order not to repeat several times the
same commands in programming, short procedures are
created. Data from the stack top are duplicated and the

Faculty of Technical Sciences - Graphic Engineering and Design

33

routine named roll is used for this. The advantage of
such programming is that a complex program can be
created with only a few lines.
(8)
The digitalized Times New Roman font is found in the
procedure named font. We use this font because it is
a standard one and the most often used. When setting
fonts, we use the name of the chosen font and its size,
i.e. the height of the digital four-component group. A
letter character is found inside the four-member group.
Most of the letter characters are fully set inside the four-
member group; only rare signs fall outside the borders,
and some fall out completely outside the four-member
group. Other commands such as findfont, scalefont
and setfont are an obligatory part of the code for set-
ting the font. The command findfont defines searching
for the set font with the command, and by the command
scalefont the height of the digital four-member group
is set in dots, and setfont activates the font display.
(9)
EOF command is abbreviated for the English sentence
„end of file“ ,and it signals that the program is ending.

Raster (Screening element obtaint by halftoning)

Program procedures for making raster forms according
to Table 1:
linijatura kut {propeler} bind setscreen
/gray 0 def /pomak 70 def
50 50 translate
5 {/pomak pomak 70 add def
pomak 0 30 0 360 arc
/gray gray 0.15 add def
gray setgray fill } repeat
The raster in elliptical form is an example of the con-
ventional round form mutation with the addition of data
deformation at the stack top. This modification is given
here as fixed flattening values of the circle into ellipse
transition amounting to 0.8 and 0.2 . The result can be
described as coverage Z mathematically defined as:

Z = x2 + y2 for the circle, and z= 0.8*x2 + 0.5*y2 for
the ellipse.

Raster (screen) forms
/propeler

/izrezanostaklo

/kava

/sismis

/krug

/elipsa

covering 75% 60% 45% 30% 15%

Table 1. Examples of individualized rasters used, liniature decreases from left to right

Journal of Graphic Engineering and Design, Volume 2 (1), 2011.

34

PostScript expressions are given in (3) program base
relations. We shall add the information that the Post-
Screen command setscreen stops operation if value Z
computes a value higher than one. Therefore it is rec-
ommended to carry out activities at the stack top with
values lower than one if coverage is interpreted in a
whole row of values from zero to full coverage. It is
also simple and acceptable with functions that add up
the square values that are positive by themselves and
are less than one.
But, in other raster forms such as in propeler where
exponentiation and square root extraction are applied,
as well as positive and negative relations, long term
experimental work in mutational operations is needed.
The domain of all variables is within the positive Z
value, and in the range of minus one to plus one for
coordinates x and y. The raster named elipsa is given
in the negative. The remainder is realized in the raster
cell that is calculated as coverage.

Vector graphics with individualized rasters

By combining vector and raster graphics we demon-
strate the manner in which such symbiosis can be used
to create a unique whole with the goal to achieve the
utmost uniqueness and quality of a certain graphic.
In the example to follow we are showing how it is pos-
sible to apply different raster elements in typographical
forms. In doing so we are not using conventional raster
forms. Letter characters NS create the already men-
tioned masks, and they are defined with the help of the
PostScript font interpretation of Times New Roman.
The design within the mask is created from four indi-
vidual rasters with randomly set liniature and angle.
Mathematical relations for the raster are installed in the
codes for each CMYK channel separately. Rasters in
typography are an excellent solution if we wish to indi-
vidualize our design in full. We can implement a unique
raster into each letter character, whereby we create a
unique product and excellent protection.

Figure 1. Graphic NS. Separation per CMYK channels
with different set rasters.

Separation per CMYK channels shown in Figure 1. is
the first step in creating the graphic in Figure 2. With
the help of the programs that enable reading of the set for-
mats, the graphic transforms, and the channels connect in
the following order: yellow, magenta, cyan and black.

Figure 2. Applying of rasters in typography, a different
individualized raster is applied in each CMYK

channel

The graphic in Figure 1. are Latin characters NS for
which we formed the clip mask. The randomly cho-
sen individualized rasters are well observed within the
mask. The rasters used are defined under the names
propeler, izrezanostaklo, kava and
Sismis. The liniature and angle alterations are set with
parameters, so that a different raster with different
mathematical values is set for each CMYK channel.

Figure 3. Display of rastered vector graphics, 1bitna
slika 0, 1(crno - bijelo)1 bit image 0.1 (black and

white)

Figure 4. Display of rvector graphics rastered in
colour, 8 bit image (256 gray tones + white and black)

Faculty of Technical Sciences - Graphic Engineering and Design

35

Program procedures for rastering vector formed graph-
ics:
 /linijatura 15 def /kut 90 def
linijatura kut {krug} bind setscreen
0.2 0.1 0.0 setrgbcolor 50 40 250 150 kvadrat
/linijatura 8 def /kut 45 def
linijatura kut {elipsa} bind setscreen
0.6 0.1 0.1 setrgbcolor 300 40 250 150 kvadrat
/linijatura 4 def /kut 60 def
linijatura kut {krug} bind setscreen
0.5 0.1 0.3 setrgbcolor 300 190 250 150 kvadrat
/linijatura 5 def /kut 20 def
linijatura kut {elipsa} bind setscreen
0.0 0.8 0.5 setrgbcolor 50 190 250 150 kvadrat
50 200 moveto /linijatura 10 def /kut 40 def
linijatura kut {propeler} bind setscreen
/h 0.6 def /s 0.9 def /bb 0.45 def
font (NS) hsb show
300 50 moveto /linijatura 5 def /kut 30 def
/r 0 def /g 0.8 def /b 0.6 def rgb
linijatura kut {sismis} bind setscreen
font (TK) show
300 200 moveto /linijatura 10 def /kut 40 def
linijatura kut {izrezanostaklo} bind setscreen
/h 0.7 def /s 0.6 def /bb 0.85 def
font (AB) hsb show
50 50 moveto /linijatura 5 def /kut 10 def
0.1 0.5 0 0.4 setcmykcolor
linijatura kut {kava} bind setscreen
font (JV) show

The graphics from Figures 3 and 4 were derived from
the same source. The program code is identical in both
the cases. The difference is in the display of program
code GSview with interpreter. In the first example (Fig-
ure 3.) GSview program is set for displaying a 1-bit
image, it recognizes only black and white (0,1), and the
set rasters are very well observed. In the second ex-
ample (Figure 4) GSview is set for displaying a 8-bit
image (256 tones), and it recognizes and displays dif-
ferent colour shades. We used different colour systems
to carry out this graphic. The substrate is made of two
rasters: krug i elipsa. Each square is an object by itself
and has a different liniature, angle and colour. The co-
lour is set by the RGB system.
The NS graphic on the green substrate (above left) was
created by using the CMYK colour system. By chang-
ing variables it was achieved that the edges of the raster
element propeler are outlined and seen in a somewhat
darker tone than the rest of the display. The HSB colour
system was used in creating the graphic on the dark red
substrate (above right) and an interesting 2D structure
was created. The graphic rastered by kava is situated
on the pink substrate (down left) created by using gray
tones (Grayscale). The NS graphic is situated on the red
substrate (down right) in green tones achieved by the
RGB colour system.

It is important that the bmpmono format should be
set with the first example (Figure 3) when converting
the image in the GSview interpreter, whereas format
bmp256 is set for the second example (Figure 4) for
the same program.
Program procedures:

Pixel Graphic with Individualized
Screnning

The key element for achieving the maximum in cre-
ativity and expression with individualized rasters is
producing a photograph with different rasters for each
C, M, Y, and K channel. We prepare the chosen photo-
graph in the programs that are provided for adjusting
format parameters necessary to carry out the designs.
In order to obtain the best possible visual effect, a dif-
ferent mathematical raster relation is implemented into
each of the CMYK channels. The PostScript interpreta-
tion of a raster element is derived from chosen trigo-
nometrical functions. Low liniature is applied and the
designs have raster elements visible by the bare human
eye. There is an important reason for applying low lin-
iature, and that is in order to show the micro structure
of certain graphics. We can thus use our computer to
complete our designs and fully individualize a graphic
design.

Figure 5. Applying rasters in pixel graphics. A
different raster is used for each CMYK channel

Figure 6. A blown up detail from Figure 5.

Journal of Graphic Engineering and Design, Volume 2 (1), 2011.

36

 Program procedures:
 30 600 translate
3 3 scale
/linijatura 10 def /kut 75 def %cijan pod kutom od
75º
linijatura kut {propeler} bind setscreen
%sirina 80 piksla, visina 84 piksla
80 84 8[1 0 0 -1 0 0]
{<8D8E94999A9B99949393919……..28EA7D3D7
A13053867B6552575450>}image

A digital photograph is divided into image elements.
The image element is set with only one numerical cov-
erage value for each channel separately. With CMYK
channel separation we create program codes into which
we implement a PostScript interpretation of the math-
ematical formula for certain functions. Lin and kut are
variables with which we set liniature and angle param-
eters and we call them by their names bind setscreen.

Figure 7. Separation per channels. From left to right
(above); channel cyan, raster propeler, channel

magenta, raster izrezanostaklo. From left to right
(below); channel yellow, raster kava; channel black,

raster šišmiš.

Procedure:

The chosen photograph is prepared in the program for
photo processing. The pixel dimensions and the resolu-
tion for printing display are set. The important thing is
for the photograph to have a four-channel separation,
i.e. – that it is stored in the CMYK colour system. The
photograph is stored in the DCS 2.0 (*.EPS) format by
which the program itself creates streams along process
channels. The streams are stored as simple *.txt format,
where we have a PostScript code set for each channel.

We add are own commands to the obtained separations
(pages 1 and 2). We will set a different raster, liniature
and angle for each separation, at random. The prelimi-
narily set pixel dimensions must be the same for each
of the CMYK channels.
The obtained separations are opened in the GSview
program used for displaying PostScript documents.
For instance, separation of cyan before converting
must have a set depth of 1 bit/pixel, so that the ras-
ter elements are visible. At conversion the format is
set to bmpmono, while the resolution is random. The
obtained *.bmp formats enable reading of the image in
various raster and vector programs. In order to obtain a
result from Figure 3., we create a new document in the
CMYK system. Bitmapped images are opened in the
program for photograph processing, and then they are
positioned in their channels one by one, with certain
preliminary actions. Before copying, the separations
must be translated into gray tone, and the unneeded
white parts should be cut off. The order of implement-
ing bitmapping separations is starting from the yellow
channel, then magenta, cyan and black.
The graphic design in this example is carried out
through separation along CMYK channels. Mathemati-
cal relations of raster elements translated into Post-
Script language are implemented into a code for each
separation separately. The possibilities of combining
raster parameters in pixel graphics are more numerous:
deformation of the pixel square structure, pixel devia-
tion, shift from the basic position, rotation and choice
of raster structure for each pixel separately. Such trans-
formations are not possible in other image processing
programs.
The graphic goes through separation along CMYK
channels. The raster element PostScript algorithm is
implemented inside each channel. The rastered portrait
separations are divided into four identical parts with
the help of the photograph processing program, in the
following order: C, M, Y, K. In the new document the
separations are united into one whole. The work com-
prises all technological process elements; from photo-
graph processing to raster system implementation. In
case we implement into our design random numbers for
angle, liniature and pixel deformation, and we initiate
a pseudo-random sequence, then we give a new dimen-
sion to each graphic design.

A black and white photograph divided into parts:
The graphic in Figure 8 is a program design created by
combining 6 rasters described in the paper. After every
12 rows the raster form is changed. If listing from top
to bottom, the following rasters are found: propeler,
izrezano staklo, kava, šišmiš, krug and elipsa. The
parameters are the same for all rasters; a 10 lin/cm lin-
iature and an angle of 45° are set. The rastering pro-
cedure with white and black photographs is somewhat
equalled with the “image“ routine.

Faculty of Technical Sciences - Graphic Engineering and Design

37

Figure 8. A black and white pixel graphic divided into
6 equal parts

Program procedures for the image in a 8 bit record, 80
pixels horizontally and 12 rows vertically with change
of the raster form for the following rows:

/linijatura 10 def /kut 45 def
linijatura kut {propeler} bind setscreen
%sirina 80 piksla, visina 80 piksla
80 12 8[1 0 0 -1 0 0]
{<605F61676F809197948B83837F808C93…..
59495BFB6919194A5ADABBB>} image
linijatura kut {izrezanostaklo} bind setscreen
80 12 8[1 0 0 -1 0 0]..................

Conclusion

Computer graphics are based on algorithms developed
as a set of routines in transforming mathematical re-
lations in a program stream for carrying out complex
printing preparations. This is a wide area and provides
the designer with adequate means to create his personal
graphic language. A set of raster forms is given that
have been tested in borderline coverage conditions.
PostScript is the basis for carrying out printed graphic,
from makeup, making the printing forms, all the way
to printing, especially the one represented as digital
printing. Almost all programs have strict preferences.
They are either only pixel or vector oriented, and si-
multaneously support a limited system of colour and
raster form use. PostScript enables fellowship of pixel
and vector graphics within the same design. Also, mix-
ing of different colour system definitions is organised
: (RGB, CMYK and HSB) within the same program.
Uniqueness is achieved with PostScript commands as

a constant library for carrying out complex raster de-
signs. Individual rasters implemented into the graphics
are a new manner of presenting security and art repro-
ductions. Raster elements were created with the devel-
opment of mathematical relations of targeted functions
that are subjected to strict domains of unit raster cells.
The goal in presenting individual rasters is to encour-
age designers in creating new authorized raster forms
by altering parameters that act as deformation and mu-
tation between two or more raster designs.

Literature

1. Agić D., Strgar Kurečić M., Mandić L., Pap
K. (2009) Black separation strategies in colour
reproduction. In: Katalinić B. (Ed.) DAAAM
International Scientific Book 2009,Vienna,
Austria, DAAAM International, pp. 001-008.

2. Pap K., Žiljak V., Vujić J. Ž. (2008) Design of
Digital Screening, Zagreb, FS d.o.o.

3. Sabati Z. Pogarčić I., Vujić Ž. Jana, Pap K., Žiljak
V. (2007) Protection of information in documents
by implementing individual rastering:Proceedings
of the 18th International Conference on
Information and Intelligent Systems, Aurere B.,
Bača M. (Ed.), Varaždin, Faculty of Organization
and Informatics, University of Zagreb. pp 299-302

4. Žiljak V., Pap K. (1998) Postscript programiranje
grafike. Zagreb. FS d.o.o.

