Journal of Production Engineering

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut ero labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco.

GUIDE FOR AUTHORS SUBMIT MANUSCRIPT
Vol. 28 No. 1 (2025)
Original Research Article

Computer-aided energy prediction for selected and blended wood biomass using ultimate and proximate analysis

Anthony Y, Oyerinde
Industrial and Production Engineering Department, The Federal University of Technology, Akure, Ondo State, Nigeria
Emmanuel I. Awode
Mechanical Engineering Department, Air Force Institute of Technology, Kaduna, Kaduna State, Nigeria
Olufemi S. Bamisaye
Mechanical Engineering Department, Faculty of Air Engineering, Air Force Institute of Technology, Kaduna, Nigeria
Ayowunmi Rita Soji-Adekunle
Mechanical Engineering Department, Adeleke University, Ede, Osun State, Nigeria
Goodhead Godspower
Mechanical Engineering Department, Adeleke University, Ede, Osun State, Nigeria
Number Daniel
Mechanical Engineering Department, Adeleke University, Ede, Osun State, Nigeria

Published 2025-06-24

abstract views: 61 // FULL TEXT ARTICLE (PDF): 0


Keywords

  • Wood Biomass,
  • Regression model,
  • Sustainable energy,
  • Calorific value

How to Cite

Oyerinde, Anthony Y, Emmanuel I. Awode, Olufemi S. Bamisaye, Ayowunmi Rita Soji-Adekunle, Goodhead Godspower, and Number Daniel. 2025. “Computer-Aided Energy Prediction for Selected and Blended Wood Biomass Using Ultimate and Proximate Analysis”. Journal of Production Engineering 28 (1):8-18. https://doi.org/10.24867/JPE-2025-01-008.

Abstract

This study evaluates the energy potential of wood biomass (sawdust) by employing computer-aided techniques to predict the higher heating value (HHV) through ultimate and proximate analyses. The ultimate analysis focuses on elemental properties, while the proximate analysis examines physical properties. The developed regression model demonstrates a high coefficient of determination (R²) of 99.69% for ultimate analysis, indicating a strong predictive capability. In contrast, the proximate analysis reveals individual correlation coefficients of 85.80% for moisture content, 79.18% for fixed carbon, and 28.10% for volatile matter. To assess the significance of each independent variable in the model, the p-values associated with the coefficients were examined. For the ultimate analysis, all input variables except for sulfur (%S) (p ≈ 0.22) had p-values less than 0.05 at a 95% significance level, indicating their statistical significance. However, in the proximate analysis, only volatile matter exhibited a relatively high p-value (p ≈ 0.12), rendering it statistically insignificant in the model. The elevated p-values for sulfur and volatile matter suggest their minimal impact on HHV predictions in their respective models. The computer program developed for this study automates the prediction process, achieving an accuracy within ±5 MJ/kg between predicted and experimental values across the dataset and is uniformly applicable to all individual models or biomass type, significantly reducing analysis time. The findings of this study contribute to optimizing biomass energy systems, enhancing energy recovery efficiency, and advancing sustainable energy practices.

PlumX Metrics

Dimensions Citation Metrics

References

  1. Zou, C. (2020). New Energy. Singapore: Springer Singapore. DOI: 10.1007/978-981-15-2728-9.
  2. WEC. (2010). Energy Policy Scenario Study to 2050 – Draft report for Africa.
  3. Basu, P. (2010). Biomass Gasification and Pyrolysis. Elsevier. DOI: 10.1016/C2009-0-20099-7.
  4. Basu, P., Rao, S., & Dhungana, A. (2013, March). An investigation into the effect of biomass particle size on its torrefaction. Canadian Journal of Chemical Engineering, 91(3), 466–474. DOI: 10.1002/cjce.21710.
  5. Okedere, O. B., Fakinle, B. S., Sonibare, J. A., Elehinafe, F. B., & Adesina, O. A. (2017, January). Particulate matter pollution from open burning of sawdust in Southwestern Nigeria. Cogent Environmental Science, 3(1), 1367112. DOI: 10.1080/23311843.2017.1367112.
  6. Onokwai, A. O., Ajisegiri, E. S. A., Okokpujie, I. P., Ibikunle, R. A., Oki, M., & Dirisu, J. O. (2022, January). Characterization of lignocellulose biomass based on proximate, ultimate, structural composition, and thermal analysis. Materials Today: Proceedings, 65, 2156–2162. DOI: 10.1016/J.MATPR.2022.05.313.
  7. Klass, D. L. (1998). Biomass for Renewable Energy, Fuels, and Chemicals. San Diego: Elsevier. DOI: 10.1016/B978-0-12-410950-6.X5000-4.
  8. Özyuğuran, A., & Yaman, S. (2017, February). Prediction of Calorific Value of Biomass from Proximate Analysis. Energy Procedia, 107, 130–136. DOI: 10.1016/j.egypro.2016.12.149.
  9. Nachenius, R. W., Ronsse, F., Venderbosch, R. H., & Prins, W. (2013). Biomass Pyrolysis. In Biomass as a Sustainable Energy Source for the Future, pp. 75–139. DOI: 10.1016/B978-0-12-386505-2.00002-X.
  10. UCANR - Woody Biomass Utilization Group. (n.d.). Woody Biomass Utilization, from https://ucanr.edu/sites/WoodyBiomass/California_Biomass_Power_Plants/, accessed on 2023-06-09.
  11. John, N., Fathima, P. S., Harsha, V. S., Paul, N. M., & Nisha, P. (2023). Physical Conversion of Biomass: Dewatering, Drying, Size Reduction, Densification, and Separation. In Handbook of Biomass (pp. 1–28). Singapore: Springer Nature Singapore. DOI: 10.1007/978-981-19-6772-6_37-1.
  12. Lomeda-De Mesa, R. A. P., Soriano, A. N., Marquez, A. R. D., & Adornado, A. P. (2020, March). Study on the proximate and ultimate analyses and calorific value of coal blending between torrefied biomass from coconut (Cocos nucifera) husk and Semirara coal. IOP Conference Series: Earth and Environmental Science, 471(1), 012004. DOI: 10.1088/1755-1315/471/1/012004.
  13. Jaya, T. (2016, June). Effect of Deep Drying and Torrefaction Temperature on Proximate, Ultimate Composition, and Heating Value of 2-mm Lodgepole Pine (Pinus contorta) Grind. Bioengineering, 3(2), 16. DOI: 10.3390/bioengineering3020016.
  14. Jaya, S. T. (2020). Bioenergy Feedstock Types and Properties. In Biomass Densification (pp. 1–21). Cham: Springer International Publishing. DOI: 10.1007/978-3-030-62888-8_1.
  15. Jaya, S. T. (2015, November). Comparison of Chemical Composition and Energy Property of Torrefied Switchgrass and Corn Stover. Frontiers in Energy Research, 3. DOI: 10.3389/fenrg.2015.00046.
  16. Jaya, S. T. (2014, March). Effect of process variables on the density and durability of the pellets made from high moisture corn stover. Biosystems Engineering, 119, 44–57. DOI: 10.1016/j.biosystemseng.2013.11.012.
  17. Antwi-Boasiako, C., & Acheampong, B. B. (2016, February). Strength properties and calorific values of sawdust-briquettes as wood-residue energy generation source from tropical hardwoods of different densities. Biomass and Bioenergy, 85, 144–152. DOI: 10.1016/j.biombioe.2015.12.006.
  18. Olutoge, F. A. (2010, April). Investigations on sawdust and palm kernel shells as aggregate replacement. ARPN Journal of Engineering and Applied Sciences, 5(4), 7–13.
  19. Aina, O. M., Adetogun, A. C., & Iyiola, K. A. (2009). Heat Energy From Value-Added Sawdust Briquettes Of Albizia Zygia. Ethiopian Journal of Environmental Studies and Management, 2(1), 42–49.
  20. Inegbedion, F. (2022, June). Estimation of the moisture content, volatile matter, ash content, fixed carbon and calorific values of sawdust briquettes. MANAS Journal of Engineering, 10(1), 17–20. DOI: 10.51354/mjen.940760.
  21. Onifade, M., Lawal, A. I., Aladejare, A. E., Bada, S., & Idris, M. A. (2022, April). Prediction of gross calorific value of solid fuels from their proximate analysis using soft computing and regression analysis. International Journal of Coal Preparation and Utilization, 42(4), 1170–1184. DOI: 10.1080/19392699.2019.1695605.
  22. Açikkar, M., & Sivrikaya, O. (2018, September). Prediction of gross calorific value of coal based on proximate analysis using multiple linear regression and artificial neural networks. Turkish Journal of Electrical Engineering & Computer Sciences, 26(5), 2541–2552. DOI: 10.3906/elk-1802-50.
  23. Mesroghli, Sh., Jorjani, E., & Chehreh Chelgani, S. (2009, July). Estimation of gross calorific value based on coal analysis using regression and artificial neural networks. International Journal of Coal Geology, 79(1–2), 49–54. DOI: 10.1016/j.coal.2009.04.002.
  24. Ayúe, Ö., & Serdar, Y. (2017). Prediction of Calorific Value of Biomass from Proximate Analysis. In 3rd International Conference on Energy and Environment Research, ICEER 2016, 7–11 September 2016, Barcelona, Spain. Energy Procedia, 107, 130–136. ScienceDirect.
  25. Munshi, T. A., Jahan, L. N., Howladar, M. F., & Hashan, M. (2024, January). Prediction of gross calorific value from coal analysis using decision tree-based bagging and boosting techniques. Heliyon, 10(1), e23395. DOI: 10.1016/j.heliyon.2023.e23395.
  26. Erol, M., Haykiri-Acma, H., & Küçükbayrak, S. (2010, January). Calorific value estimation of biomass from their proximate analyses data. Renewable Energy, 35(1), 170–173. DOI: 10.1016/j.renene.2009.05.008.
  27. Noushabadi, A. S., Dashti, A., Ahmadijokani, F., Hu, J., & Mohammadi, A. H. (2021, December). Estimation of higher heating values (HHVs) of biomass fuels based on ultimate analysis using machine learning techniques and improved equation. Renewable Energy, 179, 550–562. DOI: 10.1016/j.renene.2021.07.003.
  28. Oyerinde, A., & Bello, E. (2016, January). Use of Fourier Transformation Infrared (FTIR) Spectroscopy for Analysis of Functional Groups in Peanut Oil Biodiesel and Its Blends. British Journal of Applied Science & Technology, 13(3), 1–14. DOI: 10.9734/bjast/2016/22178.
  29. Parikh, J., Channiwala, S., & Ghosal, G. (2005, March). A correlation for calculating HHV from proximate analysis of solid fuels. Fuel, 84(5), 487–494. DOI: 10.1016/j.fuel.2004.10.010.
  30. ASTM. (2023, April). Standard Test Method for Carbon and Hydrogen in the Analysis Sample of Refuse-Derived Fuel. Retrieved March 23, 2024, from https://www.astm.org/e0777-17a.html
  31. ASTM. (2021, March). Standard Test Methods for Nitrogen in Refuse-Derived Fuel Analysis Samples. Retrieved March 23, 2024, from https://www.astm.org/e0778-15r21.html
  32. Akinola, O. A., & Fapetu, O. P. (2015). Characteristics Study of Wood Waste from sawmills. British Journal of Applied Science & Technology, 6(6), 606–612.
  33. James, C., Thomas, F., & James, S. (2014). Knowledge Based Bio-based Products’ Pre-Standardization: Sample Preparation Techniques For Total Biomass Content Determination (Vol. 1). KBBPPS, University of York. Retrieved August 2, 2024, from https://www.astm.org/e0870-82r19.html
  34. ASTM. (2021, March). Standard Test Methods for Total Sulfur in the Analysis Sample of Refuse-Derived Fuel. Retrieved March 23, 2024, from https://www.astm.org/e0775-15r21.html
  35. ASTM. (1993, March). Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils (ASTM D 2974-8).
  36. ASTM E870-82. (2019). Standard Test Methods for Analysis of Wood Fuels. Retrieved August 9, 2024, from https://www.astm.org/e0870-82r19.html
  37. Giuseppe, T., & Ester, F. P. (2009, April). Calorific Value Determination of Solid Biomass Fuel by Simplified Method. Journal of Agricultural Engineering, 3, 1–6.
  38. Nishiguchi, S., & Tabata, T. (2016, May). Assessment of social, economic, and environmental aspects of woody biomass energy utilization: Direct burning and wood pellets. Renewable and Sustainable Energy Reviews, 57, 1279–1286. https://doi.org/10.1016/j.rser.2015.12.213
  39. John, O. M. (2012). Performing Regression Analysis Using Microsoft Excel. International Journal of Arts and Commerce, 1–17. Retrieved from https://www.ijac.org.uk/images/frontImages/gallery/Vol._1_No._5/19.pdf
  40. Frost, J. (2024, August 11). How to Interpret P-values and Coefficients in Regression Analysis. Retrieved from https://statisticsbyjim.com/regression/interpret-coefficients-p-values-regression/#comments
  41. Sebastian, T. (2024, August 11). Regression Analysis: What is Regression Analysis. CFI. Retrieved from https://corporatefinanceinstitute.com/resources/data-science/regression-analysis/
  42. Menard, S. (1995). Applied logistic regression analysis. Thousand Oaks, CA: Sage.
  43. Pamela, P. (2000). Regression step-by-step using Microsoft Excel. Retrieved January 24, 2022, from https://www.coursehero.com/file/46988682/Regression-excel-Pamela-Peterson-Drakepdf/
  44. Piloto-Rodríguez, R., Sánchez-Borroto, Y., Lapuerta, M., Goyos-Pérez, L., & Verhelst, S. (2013). Prediction of the cetane number of biodiesel using artificial neural networks and multiple linear regression. Energy Conversion and Management, 65, 255–261. https://doi.org/10.1016/J.ENCONMAN.2012.07.023
  45. Zack, B. (2022, April). How to Interpret P-Values in Linear Regression. Retrieved August 11, 2024, from https://www.statology.org/linear-regression-p-value/
  46. Komaroff, E. (2020). Relationships Between p-values and Pearson Correlation Coefficients, Type 1 Errors and Effect Size Errors, Under a True Null Hypothesis. Journal of Statistical Theory and Practice, 14(3), 49. https://doi.org/10.1007/s42519-020-00115-6
  47. Preethi, S. P. (2021, September). Types of Application Software. Retrieved August 12, 2024, from https://www.bridge-global.com/blog/types-of-application-software/
  48. Zha, Z., et al. (2023). Effect of oxygen on thermal behaviors and kinetic characteristics of biomass during slow and flash pyrolysis processes. Combustion and Flame, 247, 112481. https://doi.org/10.1016/j.combustflame.2022.112481
  49. Adamovics, A., Platace, R., Gulbe, I., & Ivanovs, S. (2018, May). The content of carbon and hydrogen in grass biomass and its influence on heating value. https://doi.org/10.22616/ERDev2018.17.N014
  50. Dekui, S., Rui, X., Sai, G., & Kaihong, L. (2011). The pyrolytic behavior of cellulose in lignocellulosic biomass: A review. RSC Advances, 9. Retrieved February 17, 2024, from https://pubs.rsc.org/en/content/articlelanding/2011/ra/c1ra00534k#
  51. Demirbas, A. (2007). Effects of moisture and hydrogen content on the heating value of fuels. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 29(7), 649–655. https://doi.org/10.1080/009083190957801
  52. Lepage, T., Kammoun, M., Schmetz, Q., & Richel, A. (2021). Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment. Biomass and Bioenergy, 144, 105920. https://doi.org/10.1016/J.BIOMBIOE.2020.105920
  53. Obiora, N. K., Ujah, C. O., Asadu, C. O., Kolawole, F. O., & Ekwueme, B. N. (2024). Production of hydrogen energy from biomass: Prospects and challenges. Green Technologies and Sustainability, 2(3), 100100. https://doi.org/10.1016/J.GRETS.2024.100100
  54. Osman, A. I., et al. (2022). Hydrogen production, storage, utilisation and environmental impacts: A review. Environmental Chemistry Letters, 20(1), 153–188. https://doi.org/10.1007/s10311-021-01322-8
  55. Wang, Q., & Sarkar, J. (2018). Pyrolysis behaviors of waste coconut shell and husk biomasses. International Journal of Energy Production and Management, 3(1), 34–43. https://doi.org/10.2495/EQ-V3-N1-34-43
  56. Frodeson, S., Henriksson, G., & Berghel, J. (2019). Effects of moisture content during densification of biomass pellets, focusing on polysaccharide substances. Biomass and Bioenergy, 122, 322–330. https://doi.org/10.1016/j.biombioe.2019.01.048
  57. Yuan, Y., He, Y., Tan, J., Wang, Y., Kumar, S., & Wang, Z. (2021). Co-combustion characteristics of typical biomass and coal blends by thermogravimetric analysis. Frontiers in Energy Research, 9, 753622. https://doi.org/10.3389/fenrg.2021.753622
  58. Wibowo, S., Arief, K., & Waluyo, T. K. (2021). Characteristics of wood pellets from over-dry sawdust waste. IOP Conference Series: Earth and Environmental Science, 914(1), 012069. https://doi.org/10.1088/1755-1315/914/1/012069
  59. Ahn, S., Choi, G., & Kim, D. (2014). The effect of wood biomass blending with pulverized coal on combustion characteristics under oxy-fuel condition. Biomass and Bioenergy, 71, 144–154. https://doi.org/10.1016/j.biombioe.2014.10.014
  60. Higgins, J. (2005). Introduction to Linear Regression.
  61. Boumanchar, I., et al. (2019). Biomass higher heating value prediction from ultimate analysis using multiple regression and genetic programming. Biomass Conversion and Biorefinery, 9(3), 499–509. https://doi.org/10.1007/s13399-019-00386-5
  62. Zach, B. (2021, October). Understanding the t-Test in Linear Regression. Retrieved August 13, 2024, from https://www.statology.org/t-test-linear-regression/
  63. Liena, P., Skaidrite, B., Edgars, C., & Rasma, P. (2017). Evaluating of sulphur content in different energy crops. Engineering for Rural Development, 24, 1075–1079.
  64. Smołka-Danielowska, D., & Jabłońska, M. (2022). Chemical and mineral composition of ashes from wood biomass combustion in domestic wood-fired furnaces. International Journal of Environmental Science and Technology, 19(6), 5359–5372. https://doi.org/10.1007/s13762-021-03506-9
  65. Kaufman, R. M. D., Schildhauer, T. J., Biollaz, S. M. A., & Ludwig, C. (2014). Sulfur containing organic compounds in the raw producer gas of wood and grass gasification. Fuel, 128, 330–339. https://doi.org/10.1016/j.fuel.2014.02.038
  66. Jim, H. (2005). Introduction to Linear Regression.
  67. Frost, J. (2024, August 13). Choosing the Correct Type of Regression Analysis. Statistics by Jim. Retrieved from https://statisticsbyjim.com/regression/choosing-regression-analysis/
  68. Majumder, A. K., Jain, R., Banerjee, P., & Barnwal, J. P. (2008). Development of a new proximate analysis based correlation to predict calorific value of coal. Fuel, 87(13–14), 3077–3081. https://doi.org/10.1016/J.FUEL.2008.04.008
  69. Saidur, R., Abdelaziz, E. A., Demirbas, A., Hossain, M. S., & Mekhilef, S. (2011). A review on biomass as a fuel for boilers. Renewable and Sustainable Energy Reviews, 15(5), 2262–2289. https://doi.org/10.1016/j.rser.2011.02.015
  70. Chen, W.-H., & Kuo, P.-C. (2010). A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy, 35(6), 2580–2586. https://doi.org/10.1016/j.energy.2010.02.054
  71. George, E. S. (2015, February). Using Technology for Intentional Student Evaluation and Program Assessment. Retrieved August 13, 2024, from https://nacada.ksu.edu/Resources/Clearinghouse/View-Articles/Using-Technology-for-Evaluation-and-Assessment.aspx
  72. Nathan, T. (2023, July). Computerized Adaptive Testing (CAT): An Introduction. Retrieved August 15, 2024, from https://assess.com/computerized-adaptive-testing/